模块化自动驾驶穿梭公交服务频率优化及时刻表设计Modular autonomous shuttle transit service: frequency setting and timetabling
范文博,陈香,刘涛
摘要(Abstract):
本文针对基于模块化自动驾驶车的穿梭公交系统,研究其在过饱和状态下的服务频率、编组方案和车队规模的联合优化问题。首先,利用连续近似建模方法,构造了以系统总成本(包含乘客等待时间、车辆购置和运营成本)最小为目标的数学优化模型;其次,通过最优条件分析得到了最优服务频率和编组方案的解析解,并进一步得到最优车队规模;然后,利用离散化方法将以上最优解转化为具体的时刻表和满足整数约束的车辆编组方案;最后,通过数值实验和灵敏度分析,对模型和求解方法的有效性进行验证。实验结果表明所建立的连续近似优化模型具有较高的求解精度,与离散后的模型结果相比,系统总成本误差不超过3.24%。实验结果也揭示了不同离散方法的优劣与适用情况。与传统公交(固定车辆尺寸)对比表明模块化自动驾驶穿梭公交的系统总成本更低,且在低需求水平下优势更明显。
关键词(KeyWords): 城市交通;模块化自动车;服务频率;车辆编组;车队规模;时刻表
基金项目(Foundation): 四川省科技计划项目(2020YFH0038);; 国家自然科学基金项目(72271206,61903311)
作者(Author): 范文博,陈香,刘涛
DOI: 10.19961/j.cnki.1672-4747.2022.12.001
参考文献(References):
- [1]晏欣炜,朱政泽,周奎,等.人工智能在汽车自动驾驶系统中的应用分析[J].湖北汽车工业学院学报, 2018, 32(1):40-46.YAN Xin-wei, ZHU Zheng-ze, ZHOU Kui, et al. Application and analysis of artificial intelligence in vehicle intelligent driving system[J]. Journal of Hubei University of Automotive Technology, 2018, 32(1):40-46.
- [2]胡晓伟,石腾跃,于璐,等.基于扩展技术接受度模型的共享自动驾驶汽车用户使用意愿研究[J].交通运输工程与信息学报, 2021, 19(3):1-12.HU Xiao-wei, SHI Teng-yue, YU Lu, et al. Measuring users’willingness to use shared autonomous vehicles based on an extension technology acceptance model[J]. Journal of Transportation Engineering and Information, 2021, 19(3):1-12.
- [3]姚志洪,郝慧君,巫雪梅,等.考虑自动驾驶的混合交通流路段阻抗函数[J].交通运输工程与信息学报, 2021,19(4):1-12.YAO Zhi-hong, HAO Hui-jun, WU Xue-mei, et al. Cost function of mixed traffic flow with autonomous driving[J]. Journal of Transportation Engineering and Information, 2021, 19(4):1-12.
- [4]刘怿轩,张慧永,王猛,等.跟驰自动驾驶车时人驾车行为研究:实证与建模[J/OL].交通运输工程与信息学报:1-18(2022-07-26)[2022-12-01]. https://doi.org/10.19961/j.cnki.1672-4747.2022.04.011.LIU Yi-xuan, ZHANG Hui-yong, WANG Meng, et al. Analyzing human driving behavior when following autonomous vehicle:real vehicle testing and modeling[J/OL].Journal of Transportation Engineering and Information:1-18(2022-07-26)[2022-12-01]. https://doi.org/10.19961/j.cnki.1672-4747.2022.04.011.
- [5] TAREK F. Dubai tests autonomous pods in drive for smart city[EB/OL].(2018-03-01)[2022-12-01]. https://www. reuters. com/article/us-emirates-transportationautonomous/dubai-tests-autonomous-pods-in-drive-forsmart-city-idUSKCN1GD5G6.
- [6] RAU A, JAIN M, XIE M, et al. Planning and Design of a New Dynamic AutonomousPublic Transport System:The DART System in Singapore[C]//26th ITS World Congress. Singapore:ITS, 2019:1-11.
- [7] LAMBERT F. A new‘trackless electric train’(aka a bus)starts testing in China[EB/OL].(2017-10-30)[2022-12-01]. https://electrek. co/2017/10/30/trackless-electrictrain-china/.
- [8] STICKEL S, SCHENKER M, DITTUS H, et al. Technical feasibility analysis and introduction strategy of the virtually coupled train set concept[J]. Scientific Reports,2022, 12(1):4248.
- [9] GUO Q W, CHOW J Y J, SCHONFELD P. Stochastic dynamic switching in fixed and flexible transit services as market entry-exit real options[J]. Transportation Research Procedia, 2017, 23:380-399.
- [10] REZGUI D, SIALA J C, AGGOUNE-MTALAA W, et al. Application of a variable neighborhood search algorithm to a fleet size and mix vehicle routing problem with electric modular vehicles[J]. Computers and Industrial Engineering, 2019, 130(C):537–550.
- [11] ZHANG Z, TAFRESHIAN A, MASOUD N. Modular transit:using autonomy and modularity to improve performance in public transportation[J]. Transportation Research Part E:Logistics and Transportation Review,2020, 141:102033.
- [12] PEI M, LIN P, DU J, et al. Vehicle dispatching in modular transit networks:a mixed-integer nonlinear programming model[J]. Transportation Research Part E:Logistics and Transportation Review, 2021, 147:102240.
- [13] RAU A, TIAN L, JAIN M, et al. Dynamic autonomous road transit(DART)for use-case capacity more than bus[J]. Transportation Research Procedia, 2019, 41:812-823.
- [14] CHEN Z, LI X, ZHOU X. Operational design for shuttle systems with modular vehicles under oversaturated traffic:continuous modeling method[J]. Transportation Research Part B:Methodological, 2020, 132:76-100.
- [15] CHEN Z, LI X, ZHOU X. Operational design for shuttle systems with modular vehicles under oversaturated traffic:continuous modeling method[J]. Transportation Research Part B:Methodological, 2020, 132:76-100.
- [16] CHEN Z, LI X, QU X. A continuous model for designing corridor systems with modular autonomous vehicles enabling station-wise docking[J]. Transportation Science, 2022, 56(1):1-30.
- [17] SHI X, CHEN Z, PEI M, et al. Variable-capacity operations with modular transits for shared-use corridors[J].Transportation Research Record:Journal of the Transportation Research Board, 2020, 2674(9):230-244.
- [18] DAI Z, LIU X C, CHEN X, et al. Joint optimization of scheduling and capacity for mixed traffic with autonomous and human-driven buses:a dynamic programming approach[J]. Transportation Research Part C:Emerging Technologies, 2020, 114:598-619.
- [19] JI Y, LIU B, SHEN Y, et al. Scheduling strategy for transit routes with modular autonomous vehicles[J]. International Journal of Transportation Science and Technology, 2021, 10(2):121-135.
- [20] LIU X, QU X, MA X. Improving flex-route transit services with modular autonomous vehicles[J]. Transportation Research Part E:Logistics and Transportation Review, 2021, 149:102331.
- [21] NEWELL G F. Dispatching policies for a transportation route[J]. Transportation Science, 1971, 5(1):91-105.
- [22] SALZBORN F J M. Optimum bus scheduling[J]. Transportation Science, 1972, 6(2):137-148.
- [23] HURDLE V F. Minimum cost schedules for a public transportation route—I. Theory[J]. Transportation Science, 1973, 7(2):109-137.
- [24] SIVAKUMARAN K, LI Y, CASSIDY M J, et al. Costsaving properties of schedule coordination in a simple trunk-and-feeder transit system[J]. Transportation Research Part A:Policy and Practice, 2012, 46(1):131-139.
- [25] NIU H, ZHOU X. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions[J].Transportation Research Part C:Emerging Technologies, 2013, 36:212-230.
- [26] NIU H, ZHOU X, GAO R. Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns:nonlinear integer programming models with linear constraints[J]. Transportation Research Part B:Methodological, 2015, 76:117-135.
- [27] XU Y, JIA B, GHIASI A, et al. Train routing and timetabling problem for heterogeneous train traffic with switchable scheduling rules[J]. Transportation Research Part C:Emerging Technologies, 2017, 84:196-218.
- [28] SUN L, JIN J G, LEE D H, et al. Demand-driven timetable design for metro services[J]. Transportation Research Part C:Emerging Technologies, 2014, 46:284-299.
- [29] CHANG S K, SCHONFELD P M. Optimization models for comparing conventional and subscription bus feeder services[J]. Transportation Science, 1991, 25(4):281-298.
- [30] KIM M, LEVY J, SCHONFELD P. Optimal zone sizes and headways for flexible-route bus services[J]. Transportation Research Part B:Methodological, 2019, 130:67-81.
- [31]张姚,曹振宇.考虑换乘站点时间权重的公交时刻表优化[J].交通运输工程与信息学报, 2020, 18(1):77-82, 98.ZHANG Yao, CAO Zhen-yu. Optimization model for public transport timetable with the time weight of transfer station[J]. Journal of Transportation Engineering and Information, 2020, 18(1):77-82, 98.
- [32]李欢.基于连续近似法的公交线路优化及实例分析[D].成都:西南交通大学, 2018.LI Huan. Optimization and case study of transit lines based on continuum approximation[D]. Chengdu:Southwest Jiaotong University, 2018.
- [33] DAGANZO C, OUYANG Y. Principles of system design, operations planning and real-time control[M]. New Jersey:World Scientific, 2019.
- [34] DAGANZO C F. Structure of competitive transit networks[J]. Transportation Research Part B:Methodological, 2010, 44(4):434-446.
- [35] SANGVERAPHUNSIRI T, CASSIDY M J, DAGANZO C F. Jitney-lite:a flexible-route feeder service for developing countries[J]. Transportation Research Part B:Methodological, 2022, 156:1-13.