跟驰自动驾驶车时人驾车行为研究:实证与建模Analyzing human driving behavior when following autonomous vehicles:real vehicle testing and modeling
刘怿轩,张慧永,王猛,吴欢,宗芳
摘要(Abstract):
随着中国新基建战略的提出及自动驾驶和网联通信技术的不断发展,智能网联车辆(Connected and Automated Vehicle,CAV)、自动驾驶车辆(Autonomous Vehicle,AV)和人工驾驶车辆(Human-driven Vehicle,HDV)混行的状态将在未来一段时间内存在。在混行条件下,车辆间的交互影响模式将发生变化。本文以HDV跟驰AV的驾驶行为为研究对象,通过分析驾驶实验数据将跟驰AV时HDV的驾驶风格量化并分为迟疑型、平稳型和信赖型三类。同时考虑驾驶风格、车辆的转弯能力和转弯半径等参数改进智能驾驶人模型(Intelligent Driver Model,IDM),建立了前车为AV时的HDV跟驰模型。该模型通过对三类不同风格HDV跟驰AV时的驾驶参数的标定,能根据不同跟驰风格采取相应的跟驰策略。经数据拟合检验,该模型在启动加速、匀速行驶和制动减速阶段均能以较高精度拟合实际驾驶数据,其中直行跟驰的平均拟合精度为96.2%,转弯跟驰的平均拟合精度为91.4%。可见,本文提出的模型可以刻画HDV跟驰AV时的行为特征。在目前难以进行大规模混流实车实验的情况下,可用于混流条件下的跟驰行为仿真,也可为未来AV及HDV混行交通流的道路交通管理及基础设施设计等提供理论依据或模型基础。
关键词(KeyWords): 交通工程;跟驰模型;混行交通流;驾驶风格;数值仿真
基金项目(Foundation): 国家自然科学基金项目(61873109)
作者(Author): 刘怿轩,张慧永,王猛,吴欢,宗芳
DOI: 10.19961/j.cnki.1672-4747.2022.04.011
参考文献(References):
- [1]李克强,戴一凡,李升波,等.智能网联汽车(ICV)技术的发展现状及趋势[J].汽车安全与节能学报, 2017, 8(1):1-14.LI Ke-qiang, DAI Yi-fan, LI Sheng-bo, et al.State-of-theart and technical trends of intelligent and connected vehicles[J]. J Automotive Safety and Energy, 2017, 8(1):1-14.
- [2]郭戈,许阳光,徐涛,等.网联共享车路协同智能交通系统综述[J].控制与决策, 2019, 34(11):2375-2389.GUO Ge, XU Yang-guang, XU Tao, et al. A survey of connected shared vehicle-road cooperative intelligent transportation systems[J]. Control and Decision, 2019, 34(11):1-15.
- [3]晏欣炜,朱政泽,周奎,等.人工智能在汽车自动驾驶系统中的应用分析[J].湖北汽车工业学院学报, 2018, 32(1):40-46.YAN Xin-wei, ZHU Zheng-ze, ZHOU Kui, et al. Application and analysis of artificial intelligence in vehicle intelligent driving system[J]. Journal of Hubei University of Automotive Technology, 2018, 32(1):1-7.
- [4]沈悦,陈璟,周子涵,等.车联网环境下自动驾驶车辆动态障碍物协作避让模型[J].交通运输工程与信息学报,2021, 19(4):13-23.SHEN Yue, CHEN Jing, ZHOU Zi-han, et al, Model for cooperative dynamic obstacle avoidance of automated vehicle swarms in connected vehicles environments[J]. Journal of Transportation Engineering and Information, 2021,19(4):13-23.
- [5]郭孜政.驾驶行为险态辨识理论与方法[D].成都:西南交通大学, 2009.GUO Zi-zheng. Theories and methods on driving risk status identification[D]. Chengdu:Southwest Jiaotong University, 2009.
- [6] CARSTEN O, KIRCHER K, JAMSON S. Vehicle-based studies of driving in the real world:the hard truth?[J]. Accident Analysis&Prevention, 2013, 58:162-174.
- [7] SAGBERG F, Selpi, PICCININI G F B, et al. A review of research on driving styles and road safety[J]. Human Factors, 2015, 57(7):1248-1275.
- [8] CAO Z, LU L, CHEN C, et al. Modeling and simulating urban traffic flow mixed with regular and connected vehicles[J]. IEEE Access, 2021, 9:10392-10399.
- [9] MILANES V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C:Emerging Technologies, 2014, 48:285-300.
- [10] ZHOU Y J, ZHU H B, GUO M M, et al. Impact of CACC vehicles’cooperative driving strategy on mixed four-lane highway traffic flow[J]. Physica A:Statistical Mechanics and its Applications, 2020, 540:122721.
- [11] SONG X, WANG K, HE D. Switching multi-objective receding horizon control for CACC of mixed vehicle strings[J]. IEEE Access, 2020, 8:79684-79694.
- [12] KESTING A, TREIBER M, HELBING D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368(1928):4585-4605.
- [13]宗芳,石佩鑫,王猛,等.考虑前后多车的网联自动驾驶车辆混流跟驰模型[J].中国公路学报, 2021, 34(7):105-117.ZONG Fang, SHI Pei-xin, WANG Meng, et al. Connected and automated vehicle mixed-traffic car-following model considering states of multiple front and rear vehicles[J]. China Journal of Highway and Transport, 2021,34(7):105-117.
- [14]朱冰,蒋渊德,赵健,等.基于深度强化学习的车辆跟驰控制[J].中国公路学报, 2019, 32(6):53-60.ZHU Bing, JIANG Yuan-de, ZHAO Jian, et al. A car-following control algorithm based on deep reinforcement learning[J]. China Journal of Highway and Transport,2019, 32(6):53-60.
- [15]秦严严,余海燕,何兆益,等.车联网环境下自动驾驶交通流建模与分析[J].武汉科技大学学报, 2019, 42(6):469-473.QIN Yan-yan, YU Hai-yan, HE Zhao-yi, et al. Modeling and analysis of automated driving traffic flow in internet of vehicles environment[J]. Journal of Wuhan University of Science and Technology, 2019, 42(6):469-473
- [16] ZHENG Y, WANG J, LI K. Smoothing traffic flow via control of autonomous vehicles[J]. IEEE Internet of Things Journal, 2020, 7(5):3882-3896.
- [17]秦严严,张健,陈凌志,等.手动-自动驾驶混合交通流元胞传输模型[J].交通运输工程学报, 2020, 20(2):229-238.QIN Yan-yan, ZHANG Jian, CHEN Ling-zhi, et al. Cell transmission model of mixed traffic flow of manual-automated driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2):229-238.
- [18]姚志洪,郝慧君,巫雪梅,等.考虑自动驾驶的混合交通流路段阻抗函数[J].交通运输工程与信息学报, 2021,19(4):1-12.YAO Zhi-hong, HAO Hui-jun, WU Xue-mei, et al. Cost function of mixed traffic flow with autonomous driving[J]. Journal of Transportation Engineering and Information, 2021, 19(4):1-12.
- [19]秦大同,詹森,曾育平,等.基于驾驶风格识别的混合动力汽车能量管理策略[J].机械工程学报, 2016, 52(8):162-169..QIN Da-tong, ZHAN Sen, ZENG Yu-ping, et al.Management strategy of hybrid electrical vehicle based on driving style recognition[J].Journal of Mechanical Engineering, 2016, 52(8):162-169.
- [20]刘思源,喻伟,刘洁莹,等.考虑驾驶风格的车辆换道行为及预测模型[J].长沙理工大学学报(自然科学版),2019, 16(1):28-35.LIU Si-yuan, YU Wei, LIU Jie-ying, et al. Characteristics analysis and prediction model of lane changing behavior under different driving styles[J].Journal of Changsha University of Science&Technology(Natural Science), 2019,16(1):28-35.
- [21]刘洁莹.不同驾驶风格下驾驶人换道轨迹分析及辅助换道系统设计[D].长沙:长沙理工大学, 2017.LIU Jie-ying. Analysis on lane changing trajectory under different driving style and design on assistant lane changing system[D]. Changsha:Changsha University of Science and Technology, 2017.
- [22]李立治,杨建军,刘双喜,等.国内人群的驾驶风格分类及识别方法研究[J].重庆理工大学学报(自然科学),2019, 33(11):33-40.LI Li-zhi, YANG Jian-jun, LIU Shuang-xi, et al. Research on classification and recognition of driving style of domestic crowds[J]. Journal of Chongqing University of Technology(Natural Science), 2019, 33(11):33-40.
- [23]刘珊珊,薛锋.基于主成分分析法的不同运输方式发展协调度计算[J].交通运输工程与信息学报,2017,15(2):76-82.LIU Shan-shan, XUE Feng. Coordinate degree calculation of different transportation development based on principal component analysis method[J]. Journal of Transportation Engineering and Information,2017,15(2):76-82.
- [24]李经纬,赵治国,沈沛鸿,等.驾驶风格K-means聚类与识别方法研究[J].汽车技术, 2018(12):8-12.LI Jing-wei, ZHAO Zhi-guo, SHEN Pei-hong, et al. Research on methods of K-means clustering and recognition for driving style[J]. Automobile Technology, 2018(12):8-12.
- [25] ZHU M, WANG X, TARKO A, et al. Modeling car-following behavior on urban expressways in Shanghai:a naturalistic driving study[J]. Transportation Research Part C:Emerging Technologies, 2018, 93:425-445.
- [26] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, Statistical Physics,Plasmas, Fluids, and Related Interdisciplinary Topics,2000, 62(2 Pt A):1805-1824.
- [27] ZHENG Y M, CHENG R J, GE H X. The feedback control research on straight and curved road with car-following model[J]. Physics Letters A, 2017, 381(27):2137-2143.
- [28] SUN Y, H GE, CHENG R. An extended car-following model considering driver's desire for smooth driving on the curved road[J]. Physica A:Statistical Mechanics and its Applications, 2019, 527:121426.
- [29] SUN Y, GE H, CHENG R. A car-following model considering the effect of electronic throttle opening angle over the curved road[J]. Physica A:Statistical Mechanics and its Applications, 2019, 534:122377.
- [30] AN S, XU L, CHEN G, et al. A new car-following model on complex road considering driver’s characteristics[J].Modern Physics Letters B, 2020, 34(16):2050182.
- [31]TREIBER M, KESTING A, HELBING D. Delays, inaccuracies and anticipation in microscopic traffic models[J]. Physica A:Statistical Mechanics and Its Applications, 2006, 360(1):71-88.