公路收费站横杆状态的视频检测方法及应用Method and Applications of Video Detection for Toll-gate Cross-bar State
陈琦,刘畅,刘霄,陈坚,陈俊周
摘要(Abstract):
以高速公路收费站监控视频为背景,提出一种可自动分析和检测横杆运行状态的方法,从而判断车辆通过与否并统计车辆数。该方法的实现,首先对横杆的颜色特征和轮廓几何特征进行学习;然后对监控视频图像进行颜色和几何特征匹配以滤除非横杆区域;再对得到的疑似横杆区域进行修复;最后计算横杆的重心坐标及其运动状态以判断开闭状态。样本测试显示,新方法能有效克服视频场景中各种干扰因素的影响,提高车辆计数的准确性。
关键词(KeyWords): 智能运输系统;车辆检测;视频监控;横杆状态;车辆计数
基金项目(Foundation):
作者(Author): 陈琦,刘畅,刘霄,陈坚,陈俊周
参考文献(References):
- [1]何最红.基于视频的交通流参数检测方法研究[D].广州:广东工业大学,2006:2-4.
- [2]郁梅,蒋刚毅,贺赛龙.基于路面标记的车辆检测和计数[J].仪器仪表学报,2002,23(4):387-388.
- [3]周爱军.基于视频的车辆目标检测与跟踪技术研究[D].扬州:扬州大学,2008.
- [4]蔡力.基于视频的车辆检测与跟踪算法研究[J].微计算机应用,2010,31(1):39-44.
- [5]Vitabile S.,Pollaccia G.,Pilato G.,Sorbello F..Road signs recognition using a dynamic pixelaggregation technique in the HSV color space[C].11th International Conference on ImageAnalysis and Processing(ICIAP'01),2009:1-4
- [6]Michael W.Schwarz,William B.Cowan,John C.Beatty.An Experimental comparison of RGB,YIQ,LAB,HSV,and opponent color models[J].ACMTransactions on Graphics,1987,6(2):129-130.
- [7]Bu Qian,Sun Hongguang,Yang Danni,Zhang Jin,et al.A video target tracking method based onparticle filterand the features of affine momentinvariants[C].Proceedings of the 2009IEEEInternational Conference on Mechatronics andAutomation,2009-8-9:3275-3278.
- [8]周明,李素珍,霍家道.基于HSV模型的运动目标提取与跟踪[J].指挥控制与仿真,2010,32(2):93-96.
- [9]Gary Bradski,Adrian Kaehler.Learning openCV[M].Sebastopol:O’Reilly media,2008:252-255
- [10]JIN Min,SHI Lei.Research of moving targetsdetection and identification[C].2009 SecondInternational Conference on Intelligent ComputationTechnology and Automation,2009:332-333.
- [11]焦波,李国辉,汪彦明,等.一种基于形态学的运动车辆阴影消除方法[J].自动化学报,2008,34(7):838-839.
- [12]杨隽姝.车辆检测与实时跟踪算法研究[D].上海:华东师范大学,2009:12-21.
- [13]Gupte S.,Masoud O.,Martin R.F.K,PapanikolopoulosN.P.Detection and classification of vehicles[C].IEEE Transactions on Intelligent TransportationSystems,2002,3:37-47.
- [14]Cormen T.H,Leiserson C.E,Rivest R.L,Stein C.Introduction to algorithms[M].(2nd ed).Cambridge:The MIT Press,2001:540-547.