206 | 2 | 110 |
下载次数 | 被引频次 | 阅读次数 |
本文提出了考虑汽车流冲突的汽车滚装码头泊位分配问题。首先,定义汽车滚装码头前沿的汽车流冲突情况,引入冲突惩罚时间系数,量化汽车码头前沿汽车流冲突惩罚时间,建立允许发生汽车流冲突和不允许发生汽车流冲突的两种以最小化船舶总工作时间为目标函数的混合整数规划模型。其次,根据滚装船和汽车流的对应关系,设计滚装船-汽车流多层对应编码的遗传算法和基于规则策略的解码算法。然后,生成4组不同规模的测试算例进行数值实验,根据实验结果确定遗传算法的相关参数。在小规模算例下,遗传算法的最优解与CPLEX精确解之间的差距小于1%;在大规模算例下,遗传算法的最优解明显优于基于经验排班的策略解,进而验证本文提出的模型正确性和遗传算法的有效性。最后,在两种冲突策略的场景下对冲突惩罚系数进行敏感性分析,结果表明当冲突惩罚系数低于0.5时,两种策略的目标函数值有明显偏差,汽车滚装码头制定泊位分配计划时应该考虑汽车流之间冲突情况的影响。
Abstract:This paper addresses the berth allocation problem in automobile rollon/rolloff(Ro-Ro) terminals, considering conflicts in the flow of automobiles. Initially, the study defines conflicts in the forefront vehicle flow at Ro-Ro terminals, introducing a conflict penalty time coefficient to quantify the associated penalty time. We then proposed two mixed-integer programming models: one allowing automobile flow conflicts and the other prohibiting them. Both models aim to minimize the total working time of the ships. Subsequently,we design a genetic algorithm(GA) incorporating a multilayer correspondence encoding for Ro-Ro ships and automobile flows. Additionally, we implement a decoding algorithm based on a rule strategy.A total of four sets of test cases of varying scales are generated for numerical experiments, and the parameters of the GA are determined based on experimental results. In small-scale cases, the optimal solution of genetic algorithm is within 1% of the exact CPLEX solution. In large-scale cases, the GA outperforms the strategy-based solution derived from empirical scheduling, thus validating the correctness of the model and the effectiveness of the GA.Finally, this study conducts sensitivity analysis of conflict penalty coefficients under two conflict strategies. The results indicate that when the coefficient is below 0.5, a noticeable deviation is observed in the objective function values of the two strategies. Hence, when formulating berth allocation plans for automobile Ro-Ro terminals, the impact of conflicts between automobile flows should be considered, particularly when the conflict penalty coefficient is low.
[1]鄢然,王帅安,周煜圣.区块链技术在航运业的应用综述[J].交通运输工程与信息学报, 2022, 20(3):1-14.YAN Ran, WANG Shuaian, ZHOU Yusheng. Application of blockchain technology in the shipping industry[J].Journal of Transportation Engineering and Information,2022, 20(3):1-14.
[2]常祎妹,朱晓宁,王力.集装箱码头集成调度研究综述[J].交通运输工程学报, 2019, 19(1):136-146.CHANG Yimei, ZHU Xiaoning, WANG Li. Review on integrated scheduling of container terminals[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1):136-146.
[3] CHEN X, LI F, JIA B, et al. Optimizing storage location assignment in an automotive Ro-Ro terminal[J].Transportation Research Part B:Methodological, 2021, 143:249-281.
[4] FISCHER T, GEHRING H. Planning vehicle transhipment in a seaport automobile terminal using a multi-agent system[J]. European Journal of Operational Research,2005, 166(3):726-740.
[5]祖巧红,张立志,陈利. MAS与启发式算法结合的汽车滚装码头堆场作业调度[J].东南大学学报(自然科学版), 2010, 40(S2):297-300.ZU Qiaohong, ZHANG Lizhi, CHEN Li. Yard operation scheduling of automobile terminals based on combining MAS and heuristic algorithm[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(S2):297-300.
[6]曹玉莲,李文锋.汽车滚装码头业务流程仿真及流程再造研究[J].武汉理工大学学报(交通科学与工程版),2011, 35(4):821-824, 828.CAO Yulian, LI Wenfeng. Research on business process simulation and process reengineering in automobile ro-ro terminals[J]. Journal of Wuhan University of Technology(Transportation Science&Engineering), 2011, 35(4):821-824, 828.
[7] IANNONE R, MIRANDA S, PRISCO L, et al. Proposal for a flexible discrete event simulation model for assessing the daily operation decisions in a Ro-Ro terminal[J].Simulation Modelling Practice and Theory, 2016, 61:28-46.
[8]?ZKAN E D, NAS S, GüLER N. Capacity analysis of Ro-Ro terminals by using simulation modeling method[J]. The Asian Journal of Shipping and Logistics, 2016, 32(3):139-147.
[9]康万军,唐颖.基于仿真模型的滚装码头规划建设问题研究[J].水运工程, 2019(4):80-84.KANG Wanjun, TANG Ying. Research on planning and construction of ro-ro dock based on simulation model[J].Port&Waterway Engineering, 2019(4):80-84.
[10]赵晓艺,唐国磊,宋向群,等.客货滚装码头作业系统智能体微观仿真建模[J].大连理工大学学报, 2019, 59(1):71-78.ZHAO Xiaoyi, TANG Guolei, SONG Xiangqun, et al.Agent-based microscopic simulation modeling of RoPax terminal operation system[J]. Journal of Dalian University of Technology, 2019, 59(1):71-78.
[11] MARZANO V, TOCCHI D, FIORI C, et al. Ro-Ro/RoPax maritime transport in Italy:a policy-oriented market analysis[J]. Case Studies on Transport Policy, 2020, 8(4):1201-1211.
[12] ABOURRAJA M N, KRINGOS N, MEIJER S. Exploiting simulation model potential in investigating handling capacity of Ro-Ro terminals:the case study of Norvik seaport[J]. Simulation Modelling Practice and Theory,2022, 117:102513.
[13] ABOURRAJA M N, ROUKY N, KORNEVS M, et al.A simulation-based decision support framework devoted to Ro-Ro terminals:design, implementation and evaluation[J]. Computers&Industrial Engineering, 2023, 180:109248.
[14] MATTFELD D C, ORTH H. The allocation of storage space for transshipment in vehicle distribution[J]. OR Spectrum, 2006, 28(4):681-703.
[15] CORDEAU J F, LAPORTE G, MOCCIA L, et al. Optimizing yard assignment in an automotive transshipment terminal[J]. European Journal of Operational Research,2011, 215(1):149-160.
[16]陈晓静,胡志华,李功君.基于吸引度搜索的汽车滚装码头堆场车位分配优化[J].大连理工大学学报, 2016,56(2):118-126.CHEN Xiaojing, HU Zhihua, LI Gongjun. Optimization for parking space distribution in automotive ro-ro yard based on attraction degree search[J]. Journal of Dalian University of Technology, 2016, 56(2):118-126.
[17]陈晓静,李峰,高自友.应对紧急附加订单的汽车滚装堆场车位合并分配优化[J].系统工程理论与实践,2018, 38(5):1249-1262.CHEN Xiaojing, LI Feng, GAO Ziyou. Optimization for incorporative distribution of parking space considering additional emergency order in automotive ro-ro storage yard[J]. Systems Engineering-Theory&Practice, 2018,38(5):1249-1262.
[18] ZHANG D, CHEN F, MEI Z. Optimization on joint scheduling of yard allocation and transfer manpower assignment for automobile RO-RO terminal[J]. Transportation Research Part E:Logistics and Transportation Review, 2023, 177:103256.
[19] NISHIMURA E, GUO H. Vehicle arrangement problem for an automobile carrier terminal[C]//2020 IEEE International Conference on Industrial Engineering and Engineering Management(IEEM). Singapore:IEEE, 2021:761-765.
[20] DKHIL H, DIARRASSOUBA I, BENMANSOUR S,et al. Modelling and solving a berth allocation problem in an automotive transshipment terminal[J]. Journal of the Operational Research Society, 2021, 72(3):580-593.
[21]张帝,梅子翘,陈峰,等.汽车滚装码头泊位调度优化模型与算法研究[J].运筹与管理, 2022, 31(3):9-16.ZHANG Di, MEI Ziqiao, CHEN Feng, et al. Research of berth scheduling optimization model and algorithm on automotive RO-RO terminals[J]. Operations Research and Management Science, 2022, 31(3):9-16.
[22]丁涛,李光泽.考虑碳排放的滚装码头商品汽车双向运输路径优化[C]//世界交通运输大会执委会.2023世界交通运输大会(WTC2023)论文集(下册).北京:人民交通出版社有限公司, 2023:1849-1854.
[23]童珊.基于船舶优先权的集装箱港口泊位分配问题[J].交通运输工程与信息学报, 2012, 10(1):105-110.TONG Shan. Solving dynamic berth allocation problem at container terminal based on ships’service priority[J].Journal of Transportation Engineering and Information,2012, 10(1):105-110.
[24] LEE D H, JIN J G. Feeder vessel management at container transshipment terminals[J]. Transportation Research Part E:Logistics and Transportation Review,2013, 49(1):201-216.
基本信息:
DOI:10.19961/j.cnki.1672-4747.2023.11.002
中图分类号:U691.3
引用信息:
[1]隋毅,金建钢.考虑汽车流冲突的汽车滚装码头泊位分配研究[J].交通运输工程与信息学报,2024,22(03):118-133.DOI:10.19961/j.cnki.1672-4747.2023.11.002.
基金信息:
国家自然科学基金优秀青年基金项目(72122014)