nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 01 v.23 174-188
中国省域交通运输碳排放空间网络特征研究
基金项目(Foundation): 浙江省哲学社会科学规划课题(24NDJC177YB); 国家自然科学基金项目(72274178,719); 综合交通运输大数据应用技术交通运输行业重点实验室开放课题(2023B1203); 浙江省大学生科技创新活动计划(新苗人才计划)项目(2023R406030)
邮箱(Email): cqzhang@zstu.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2024.08.014
中文作者单位:

浙江理工大学,建筑工程学院;交通运输部科学研究院,交通信息研究中心;

摘要(Abstract):

【目标】刻画我国交通运输碳排放空间关联结构特征,对系统推进各地区协同碳减排能力及交通运输行业高质量发展具有重大意义。【方法】重新分配能源消费比例,以提高中国交通运输碳排放数据的精确度;进一步应用修正引力模型和社交网络分析,以揭示省域间碳排放的空间关联结构和网络特征。【数据】基于《中国能源统计年鉴》,搜集1997年至2022年中国30个省域的能源消费数据,计算得到交通运输碳排放数据。【结果】(1)样本考察期内我国交通运输碳排放波动增长,空间格局呈现“东部>西部>中部>东北”的特征,近些年高碳排放量地区逐渐向东北及中西部地区扩展;(2)样本考察期内我国省域交通运输碳排放空间溢出效应显著,形成了复杂、多线程的关联关系,但关联网络依旧较为松散;(3)整个网络呈现出显著的马太效应,地理位置优越且经济发展水平高的地区控制着整个关联网络,而部分省域受限于其边缘的地理位置与较不完善的交通网络,在整个空间网络中处于被动位置;(4)四大板块之间的联系十分紧密,具有良好的板块连通性,大都存在显著的双向溢出效应。【应用】有助于各省域明晰自身在空间网络中的地位与作用,对其制定区域化针对性的交通运输碳减排政策具有一定的现实意义。

关键词(KeyWords): 综合运输;空间网络结构;社会网络分析;引力模型;交通运输碳排放
参考文献

[1] MCCULLOCH M T, WINTER A, SHERMAN C E, et al.300 years of sclerosponge thermometry shows global warming has exceeded 1.5℃[J]. Nature Climate Change,2024, 14:171-177.

[2]袁志逸,李振宇,康利平,等.中国交通部门低碳排放措施和路径研究综述[J].气候变化研究进展, 2021, 17(1):27-35.YUAN Zhiyi, LI Zhenyu, KANG Liping, et al. A review of low-carbon measurements and transition pathway of transport sector in China[J]. Climate Change Research, 2021,17(1):27-35.

[3]黄志辉,纪亮,尹洁,等.中国道路交通二氧化碳排放达峰路径研究[J].环境科学研究, 2022, 35(2):385-393.HUANG Zhihui, JI Liang, YIN Jie, et al. Peak pathway of China’s road traffic carbon emissions[J]. Research of Environmental Sciences, 2022, 35(2):385-393.

[4]王妍,欧国立. CGE模型在低碳交通政策领域的应用及前景[J].清华大学学报(自然科学版), 2023, 63(11):1693-1706.WANG Yan, OU Guoli. Application and prospects of the computable general equilibrium model in low-carbon transportation policies[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11):1693-1706.

[5]国务院.国务院关于印发2030年前碳达峰行动方案的通知国发[2021]23号[A].北京2021.

[6]新华社.中共中央国务院关于加快经济社会发展全面绿色转型的意见[EB/OL].(2024-08-11)[2024-08-14].https://www. gov. cn/zhengce/202408/content_6967665.htm.

[7]邵海琴,王兆峰.中国交通碳排放效率的空间关联网络结构及其影响因素[J].中国人口·资源与环境, 2021, 31(4):32-41.SHAO Haiqin, WANG Zhaofeng. Spatial network structure of transportation carbon emissions efficiency in China and its influencing factors[J]. China Population, Resources and Environment, 2021, 31(4):32-41.

[8]郭文强,史瑞雪,雷明,等.中国省际碳排放空间关联网络结构特征及碳平衡分区[J].生态学报, 2024, 44(18):8003-8020.GUO Wenqiang, SHI Ruixue, LEI Ming, et al. Structural characteristics and carbon-balanced zoning of spatial correlation network of inter-provincial carbon emissions in China[J]. Acta Ecologica Sinica, 2024, 44(18):8003-8020.

[9]左大杰,戴文涛,熊巧,等.基于EKC视角的四川省交通碳排放与行业增长关系的实证研究[J].公路交通科技,2018, 35(4):129-136.ZUO Dajie, DAI Wentao, XIONG Qiao, et al. Empirical study on relationship between traffic carbon emission and industry growth in Sichuan Province based on EKC perspective[J]. Journal of Highway and Transportation Research and Development, 2018, 35(4):129-136.

[10]蒋自然,金环环,王成金,等.长江经济带交通碳排放测度及其效率格局(1985~2016年)[J].环境科学, 2020,41(6):2972-2980.JIANG Ziran, JIN Huanhuan, WANG Chengjin, et al.Measurement of traffic carbon emissions and pattern of efficiency in the Yangtze River economic belt(1985-2016)[J]. Environmental Science, 2020, 41(6):2972-2980.

[11]陶玉国,黄震方,史春云.基于替代式自下而上法的区域旅游交通碳排放测度[J].生态学报, 2015, 35(12):4224-4233.TAO Yuguo, HUANG Zhenfang, SHI Chunyun. Carbon dioxide emissions from regional tourism transport:a substitutional bottom-up analysis[J]. Acta Ecologica Sinica,2015, 35(12):4224-4233.

[12] LI W, BAO L, LI Y, et al. Assessing the transition to lowcarbon urban transport:a global comparison[J]. Resources, Conservation and Recycling, 2022, 180:106179.

[13] LIU J, CHEN X, ZHOU H, et al. A practical methodology to evaluate internationally consistent energy data for China’s transport sector[J]. Journal of Cleaner Production, 2019, 239:118030.

[14] WANG W, WANG J. Determinants investigation and peak prediction of CO2emissions in China’s transport sector utilizing bio-inspired extreme learning machine[J].Environmental Science and Pollution Research, 2021, 28(39):55535-55553.

[15]宁春晓,郭秀锐,龚晓倩,等.京津冀交通部门的碳排放及减排潜力预测研究[J].环境科学与技术, 2023, 46(9):138-147.NING Chunxiao, GUO Xiurui, GONG Xiaoqian, et al.Estimation of carbon dioxide emissions and prediction of emission reduction potential in Beijing-Tianjin-Hebei Region’s transportation sector[J]. Environmental Science&Technology, 2023, 46(9):138-147.

[16] YU Y, DU Y. Impact of technological innovation on CO2emissions and emissions trend prediction on‘New Normal’economy in China[J]. Atmospheric Pollution Research, 2019, 10(1):152-161.

[17]陈亮,何涛,李巧茹,等.区域交通碳排放相关指标测算及影响因素分析[J].北京工业大学学报, 2017, 43(4):631-637.CHEN Liang, HE Tao, LI Qiaoru, et al. Index calculation and effect factor study of regional transport carbon emission[J]. Journal of Beijing University of Technology, 2017, 43(4):631-637.

[18]金都,刘新平.中国能源结构转型:碳减排效应、驱动因素及碳达峰探索[J].安全与环境学报, 2024, 24(12):4908-4916.JIN Du, LIU Xinping. Exploring the carbon emission reduction effects, drivers, and peak carbon strategies in China's energy structure transformation[J]. Journal of Safety and Environment, 2024(12):4908-4916.

[19] HOU Y, WANG Q, TAN T. Prediction of carbon dioxide emissions in China using shallow learning with cross validation[J]. Energies, 2022, 15(22):8642.

[20] WANG Z, ZHAO Z, WANG C. Random forest analysis of factors affecting urban carbon emissions in cities within the Yangtze River Economic Belt[J]. PLoS One,2021, 16(6):e0252337.

[21] BAI C, ZHOU L, XIA M, et al. Analysis of the spatial association network structure of China’s transportation carbon emissions and its driving factors[J]. Journal of Environmental Management, 2020, 253:109765.

[22]张帅,袁长伟,赵小曼.中国交通运输碳排放空间聚类与关联网络结构分析[J].经济地理, 2019, 39(1):122-129.ZHANG Shuai, YUAN Changwei, ZHAO Xiaoman.Spatial clustering and correlation network structure analysis of transportation carbon emissions in China[J]. Economic Geography, 2019, 39(1):122-129.

[23]冯薇,赵荣钦,谢志祥,等.碳中和目标下土地利用碳排放效率及其时空格局——以黄河流域72个地级市为例[J].中国土地科学, 2023, 37(1):102-113.FENG Wei, ZHAO Rongqin, XIE Zhixiang, et al. Land use carbon emission efficiency and its spatial-temporal pattern under carbon neutral target:a case study of 72cities in the Yellow River Basin[J]. China Land Science,2023, 37(1):102-113.

[24]朱泳丽,丁利杰.长三角城市群碳排放强度的空间效应及影响因素——基于产业转移视角[J].资源科学,2022, 44(7):1373-1387.ZHU Yongli, DING Lijie. Spatial effects and influencing factors of carbon emission intensity in the Yangtze River Delta urban agglomeration:an industrial transfer-based perspective[J]. Resources Science, 2022, 44(7):1373-1387.

[25]陈操操,蔡博峰,孙粉,等.京津冀与长三角城市群碳排放的空间聚集效应比较[J].中国环境科学, 2017, 37(11):4371-4379.CHEN Caocao, CAI Bofeng, SUN Fen, et al. Spatial agglomeration effects of carbon dioxide emissions between Beijing-Tianjin-Heibei region and Yangtze River Delta region[J]. China Environmental Science, 2017, 37(11):4371-4379.

[26]李云燕,张雪莹.基于空间视角的交通运输规模对交通碳排放的影响路径[J].环境科学, 2024, 45(11):6392-6402.LI Yunyan, ZHANG Xueying. Mechanism of transportation capacity influence on carbon emission of transportation sector at China provincial in spatial perspective[J].Environmental Science, 2024, 45(11):6392-6402.

[27]周灿,刘文丽,林声甜,等.长江经济带城市绿色技术创新对碳排放影响的空间效应研究[J].长江流域资源与环境, 2024, 33(9):1833-1843.ZHOU Can, LIU Wenli, LIN Shengtian, et al. Spatial effect of urban green technology innovation on carbon emissions in Yangtze River economic belt[J]. Resources and Environment in the Yangtze Basin, 2024, 33(9):1833-1843.

[28]俞洁,张勇,李清瑶.长三角碳排放空间关联网络结构特征及演化机制[J].自然资源学报, 2024, 39(2):372-391.YU Jie, ZHANG Yong, LI Qingyao. Structural characteristics and evolutionary mechanism of spatial correlation network of carbon emissions in the Yangtze River Delta[J]. Journal of Natural Resources, 2024, 39(2):372-391.

[29] ZHANG L, LONG R, CHEN H, et al. A review of China’s road traffic carbon emissions[J]. Journal of Cleaner Production, 2019, 207:569-581.

[30] HE Y Y, WEI Z X, LIU G Q, et al. Spatial network analysis of carbon emissions from the electricity sector in China[J]. Journal of Cleaner Production, 2020, 262:121193.

[31] SHEN W, LIANG H, DONG L, et al. Synergistic CO2reduction effects in Chinese urban agglomerations:perspectives from social network analysis[J]. Science of the Total Environment, 2021, 798:149352.

[32]张正峰,张栋.基于社会网络分析的京津冀地区碳排放空间关联与碳平衡分区[J].中国环境科学, 2023, 43(4):2057-2068.ZHANG Zhengfeng, ZHANG Dong. Spatial relatedness of CO2emission and carbon balance zoning in Beijing Tianjin Hebei counties[J]. China Environmental Science, 2023, 43(4):2057-2068.

[33] WANG H, LIU P. Spatial correlation network of renewable energy consumption and its influencing factors:evidence from 31 Chinese Provinces[J]. Renewable Energy,2023, 217:119173.

[34]王奕淇,甄雯青.中国省际碳排放绩效空间关联效应及影响因素[J].生态学报, 2024, 44(16):7036-7050.WANG Yiqi, ZHEN Wenqing. Spatial correlation effect and influencing factors of provincial carbon emission performance in China[J]. Acta Ecologica Sinica, 2024,44(16):7036-7050.

[35]甘畅,王凯.中国服务业生态效率空间关联网络及其驱动机制[J].地理与地理信息科学, 2024, 40(6):51-61.GAN Chang, WANG Kai. Spatial Correlation Network of Eco-Efficiency of Service Industry and Its Driving Mechanism in China[J]. Geography and Geo-Information Science, 2024, 40(6):51-61.

[36]陈小龙,贾文菡,陈科其,等.中国淡水养殖碳排放效率的空间关联网络结构及其影响因素[J].中国生态农业学报(中英文), 2024, 32(7):1122-1135.CHEN Xiaolong, JIA Wenhan, CHEN Keqi, et al. Spatial correlation network structure and influencing factors of carbon emission efficiency of freshwater aquaculture in China[J]. Chinese Journal of Eco-Agriculture, 2024,32(7):1122-1135.

[37]方霞,谭龙昕,吴洁.数字金融空间关联、学习效应与地区收入差距收敛[J].系统工程理论与实践, 2024, 44(12):3877-3895.FANG Xia, TAN Longxi, WU Jie. Digital financial spatial correlation, learning effect and regional income convergence[J]. Systems Engineering-Theory&Practice,2024, 44(12):3877-3895.

[38]陆杉,熊娇,李雯.长江中游地区农业生态效率空间关联网络演化及驱动因素[J].生态学报, 2024, 44(8):3199-3212.LU Shan, XIONG Jiao, LI Wen. Evolution and driving factors of spatial correlation network of agricultural ecoefficiency in the middle reaches of the Yangtze River[J].Acta Ecologica Sinica, 2024, 44(8):3199-3212.

[39]雷婷,王奕淇,王超.中国省际旅游交通碳排放空间关联网络及影响因素[J].环境科学, 2025, 46(1):53-65.LEI Ting, WANG Yiqi, WANG Chao. Spatial correlation network and influencing factors of carbon emissions from inter-provincial tourism transportation in China[J].Environmental Science, 2025, 46(1):53-65.

[40] WASSERMAN S, FAUST K. Social network analysis[M]. Cambridge, UK:Cambridge University Press, 1994.

[41]海小辉,湛星星,王许.“双碳”目标背景下省域碳排放空间关联网络特征研究[J].统计与决策, 2024, 40(17):85-89.

[42]李智慧,郭海燕,胡奕,等.中国旅游生态安全的空间关联网络结构及影响因素[J].生态学报, 2024, 44(23):10582-10594.Li Z H, Guo H Y, Hu Y, Xu L P. Spatial correlation network structure and influencing factors of tourism ecological security in China[J]. Acta Ecologica Sinica, 2024,44(23):10582-10594.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2024.08.014

中图分类号:X322;F512

引用信息:

[1]张艳妃,张春勤,黄毅等.中国省域交通运输碳排放空间网络特征研究[J].交通运输工程与信息学报,2025,23(01):174-188.DOI:10.19961/j.cnki.1672-4747.2024.08.014.

基金信息:

浙江省哲学社会科学规划课题(24NDJC177YB); 国家自然科学基金项目(72274178,719); 综合交通运输大数据应用技术交通运输行业重点实验室开放课题(2023B1203); 浙江省大学生科技创新活动计划(新苗人才计划)项目(2023R406030)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文