198 | 0 | 6 |
下载次数 | 被引频次 | 阅读次数 |
【目标】准确刻画实际出行场景中出行者的长时拼车决策行为,揭示非理性心理特征,并优化奖励机制及其实施效果。【方法】基于瓶颈模型构建实验框架及奖励机制,开展长时交互实验,并结合前景理论,分析出行者在差异化奖励策略下的拼车决策演变及非理性表现。【结果】奖励拼车服务中,大部分出行者在面对损失时的决策变化幅度更大,反映出损失规避倾向。在驾龄1~3年、高收入、通勤天数较少且对奖励机制认知水平较高的女性群体中此损失规避倾向最为明显,而高频通勤者及高学历、低收入人群则未表现出显著特征。引入拼车匹配失败补偿机制后,出行者的拼车率进一步提高。【结论】验证了出行者的损失规避心理及因规避潜在成本增加(如时间延误、额外支出等)而放弃拼车的风险规避行为,进一步揭示了非理性心理的异质性特征及其对决策的影响。【应用】鉴于出行者非理性心理的异质性,提出精细化调整奖励策略,包括个性化奖励金额设置、补偿机制引入、信息反馈内容优化及匹配算法升级等措施,为精准、高效的拼车奖励策略设计提供理论支持与实践指导。
Abstract:[Objective] This study aims to accurately depict the long-term carpooling decision-making behaviors of travelers in real-world scenarios, identify irrational psychological traits, and optimize incentive mechanisms and their effects. [Methods] An experimental framework and incentive mechanism based on a bottleneck model are developed. Additionally, long-term interactive experiments are conducted using prospect theory to analyze the evolution of carpooling decisions and irrational behaviors under differentiated incentive strategies. [Results] In incentive-based carpooling services, most travelers exhibit greater decision fluctuations when encountering potential losses, thus highlighting loss-aversion psychology, particularly among women with one to three years of driving experience, high income, fewer commuting days, and greater awareness of the incentive mechanism.By contrast, groups such as high-frequency commuters and highly educated, low-income individuals show no significant traits. Introducing a compensation mechanism for carpooling-matching failures further increases carpooling rates. [Conclusion] The findings confirm loss-and risk-averse behaviors in avoiding carpooling to mitigate potential costs(e. g., time delays and additional expenses).[Applications] Considering the heterogeneous irrational characteristics of travelers, refined adjustments to incentive strategies, including personalized incentive amounts, introduction of compensation mechanisms, improved feedback content, and enhanced matching algorithms, can be proposed to provide theoretical support and practical guidance for designing precise and effective carpooling incentive strategies.
[1] NEOH J G, CHIPULU M, MARSHALL A. What encourages people to carpool? An evaluation of factors with meta-analysis[J]. Transportation, 2017, 44(2):423-447.
[2] STANDING C, STANDING S, BIERMANN S. The implications of the sharing economy for transport[J]. Transport Reviews, 2019, 39(2):226-242.
[3] SHAHEEN S, COHEN A. Shared ride services in North America:definitions, impacts, and the future of pooling[J]. Transport Reviews, 2019, 39(4):427-442.
[4] MINETT P, PEARCE J. Estimating the energy consumption impact of casual carpooling[J]. Energies, 2011, 4(1):126-139.
[5] COLLURA J. Evaluating ride-sharing programs:massachusetts'experience[J]. Journal of Urban Planning and Development, 1994, 120(1):28-47.
[6] WANG T, CHEN C. Attitudes, mode switching behavior,and the built environment:a longitudinal study in the puget sound region[J]. Transportation Research Part A:Policy and Practice, 2012, 46(10):1594-1607.
[7] DINESHS, REJIKUMAR G, SISODIA G S. An empirical investigation into carpooling behaviour for sustainability[J]. Transportation Research Part F:Traffic Psychology and Behaviour, 2021, 77:181-196.
[8] T?USCHER K, KIETZMANN J. Learning from failures in the sharing economy[J]. MIS Quarterly Executive,2017, 16(4):253-264.
[9] KRISTAL A S, WHILLANS A V. What we can learn from five naturalistic field experiments that failed to shift commuter behaviour[J]. Nature Human Behaviour, 2020, 4(2):169-176.
[10] OLSSON L E, MAIER R, FRIMAN M. Why do they ride with others? meta-analysis of factors influencing travelers to carpool[J]. Sustainability, 2019, 11(8):2414.
[11] BROWNSTONE D, GOLOB T F. The effectiveness of ridesharing incentives discrete-choice models of commuting in Southern California[J]. Regional Science and Urban Economics, 1992, 22(1):5-24.
[12] HU X, CHIU Y C, ZHU L. Behavior insights for an incentive-based active demand management platform[J].International Journal of Transportation Science and Technology, 2015, 4(2):119-133.
[13] SHEN Q, WANG Y, GIFFORD C. Exploring partnership between transit agency and shared mobility company:an incentive program for app-based carpooling[J]. Transportation, 2021, 48(5):2585-2603.
[14] TIAN Y, LI Y, SUN J. Stick or carrot for traffic demand management? Evidence from experimental economics[J]. Transportation Research Part A:Policy and Practice,2022, 160:235-254.
[15] KAHNEMAN D, TVERSKY A. Prospect theory:an analysis of decision under risk[J].Econometrica:Journal of the Econometric Society, 1979, 47(2):263-291.
[16]胡晓伟,王健,孙广林.有限理性下出行者方式选择行为[J].哈尔滨工业大学学报, 2011, 43(12):114-118.HU Xiaowei, WANG Jian, SUN Guanglin. Traveler’s mode choice behavior analysis under bounded rational[J]. Journal of Harbin Institute of Technology, 2011, 43(12):114-118.
[17]石修路.基于前景理论与模糊综合评价的出行方式选择[J].交通运输工程与信息学报, 2018, 16(3):119-124.SHI Xiulu. Travel mode choice based on prospect theory and fuzzy comprehensive evaluation[J]. Journal of Transportation Engineering and Information, 2018, 16(3):119-124.
[18]韩鹏,王吉栋,丰海宽,等.基于前景理论的大学生出行方式选择[J].交通运输工程与信息学报, 2017, 15(3):146-153.HAN Peng, WANG Jidong, FENG Haikuan, et al. Selection of college student travel modes based on prospect theory[J]. Journal of Transportation Engineering and Information, 2017, 15(3):146-153.
[19]王伟,孙会君.基于参考依赖理论的瓶颈道路收费模型[J].交通运输系统工程与信息, 2014, 14(1):180-186, 208.WANG Wei, SUN Huijun. Pricing models in a highway with bottleneck based on reference-dependent theory[J].Journal of Transportation Systems Engineering and Information Technology, 2014, 14(1):180-186, 208.
[20] JOU R, KITAMURA R, WENG M C, et al. Dynamic commuter departure time choice under uncertainty[J].Transportation Research Part A:Policy and Practice,2008, 42(5):774-783.
[21] LO H K, LUO X W, SIU B W Y. Degradable transport network:Travel time budget of travelers with heterogeneous risk aversion[J]. Transportation Research Part B:Methodological, 2006, 40(9):792-806.
[22]赖元文,胡亮,林力.基于参考依赖理论的出行者路径选择模型研究[J].公路交通科技, 2021, 38(7):131-137.LAI Yuanwen, HU Liang, LIN Li. Study on traveler’s route choice model based on reference dependence theory[J]. Journal of Highway and Transportation Research and Development, 2021, 38(7):131-137.
[23]齐航,于跃洋,王光超,等.策略性交通出行选择行为研究评述:实验经济学方法的应用[J].交通运输工程与信息学报, 2022, 20(3):141-153.QI Hang, YU Yueyang, WANG Guangchao, et al. A literature review of laboratory experimental studies on travel decisions under strategic uncertainty in directed transportation networks:the application of experimental economics methodology[J]. Journal of Transportation Engineering and Information, 2022, 20(3):141-153.
[24] CHORUS C G. Risk aversion, regret aversion and travel choice inertia:an experimental study[J]. Transportation Planning and Technology, 2014, 37(4):321-332.
[25] BAO Y, GAO Z, XU M, et al. Tradable credit scheme for mobility management considering travelers’ loss aversion[J]. Transportation Research Part E:Logistics and Transportation Review, 2014, 68:138-154.
[26] MIRALINAGHI M, PEETA S, HE X, et al. Managing morning commute congestion with a tradable credit scheme under commuter heterogeneity and market loss aversion behavior[J]. Transportmetrica B:Transport Dynamics, 2019, 7(1):1780-1808.
[27] REY D, DIXIT V V, YGNACE J L, et al. An endogenous lottery-based incentive mechanism to promote offpeak usage in congested transit systems[J]. Transport Policy, 2016, 46:46-55.
[28] VICKREY W S. Congestion theory and transport investment[J]. The American Economic Review, 1969, 59(2):251-260.
[29] SUN J, WU J, XIAO F, et al. Managing bottleneck congestion with incentives[J]. Transportation Research Part B:Methodological, 2020, 134:143-166.
[30] WU J, TIAN Y, SUN J, et al. Public or private? Optimal organization for incentive-based travel demand management[J]. Transportation Research Part E:Logistics and Transportation Review, 2023, 174:103137.
基本信息:
DOI:10.19961/j.cnki.1672-4747.2024.08.015
中图分类号:U491
引用信息:
[1]付全路,肖琳,田野等.基于交互实验的长时拼车决策演变及非理性行为[J].交通运输工程与信息学报,2025,23(02):71-85.DOI:10.19961/j.cnki.1672-4747.2024.08.015.
基金信息:
国家自然科学基金项目(52402374,52002279)