nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.23 1-26
低空运行安全保障技术研究综述
基金项目(Foundation): 深圳市科技计划项目(KJZD20240903104106009); 中国工程院院地合作项目(2024-DFZD-18-03)
邮箱(Email):
DOI: 10.19961/j.cnki.1672-4747.2025.03.023
摘要:

【背景】低空经济规模化发展,低空飞行活动日益增多,对低空运行安全保障的需求也随之增长。【目标】探究低空安全保障技术的研究进展,系统化梳理和总结多方面相关的研究成果。【方法】从通信感知、空域航路、运行控制和飞行监管四个方面梳理了国内外研究现状,剖析了低空飞行在复杂和动态环境应用中所面临的挑战,并提出低空运行安全发展建议。【结果】低空运行安全保障技术的研究仍处于初步发展阶段,存在安全保障体系建设不完善,复杂场景技术适配不足,以及实际测试验证缺失等问题,未来需要更可靠、更灵敏的通信感知,更合理、更精细的空域航路,更高效、更灵活的运行控制,更全面、更实时的飞行监管,以满足低空飞行活动的安全性和可持续发展要求。【应用】本综述可为低空运行安全保障技术的进一步发展和应用提供参考和指导。

Abstract:

[Background] The large-scale development of the low-altitude economy is intensifying low-altitude flight activities, creating a heightened demand for low-altitude operational safety assurance. [Objective] This review investigates the advancements in low-altitude security assurance technologies by systematically summarizing relevant studies from multiple perspectives. [Methods] The current state of research is reviewed domestically and internationally from four key aspects: communication and sensing, airspace route planning, operational control, and flight supervision. Subsequently,challenges in complex and dynamic low-altitude environments are analyzed, with recommendations to improve safety in aviation operations proposed. [Results] Research on low-altitude operational safetyassurance technology is nascent. Key issues include an underdeveloped safety-assurance system, inadequate adaptability to complex scenarios, and a lack of practical testing and validation. To meet the safety and sustainability goals for low-altitude flight activities, enhancements are needed in communication and sensing reliability, airspace and route optimization, operational control efficiency, and comprehensive real-time flight monitoring. [Application] This review provides insights and guidance for the ongoing development and application of low-altitude operational safety assurance technologies.

参考文献

[1]王震,周超,樊永文,等.无人机系统安全性综述[J].计算机科学, 2024, 51(S1):876-881.WANG Zhen, ZHOU Chao, FAN Yongwen, et al. Overview of unmanned aerial vehicle systems security[J].Computer Science, 2024, 51(S1):876-881.

[2]陈谋,马浩翔,雍可南,等.无人机安全飞行控制综述[J].机器人, 2023, 45(3):345-366.CHEN Mou, MA Haoxiang, YONG Kenan, et al. Safety flight control of UAV:a survey[J]. Robot, 2023, 45(3):345-366.

[3]廖慧姣.面向低空经济产业的无人机监管体系研究:基于美国经验的思考[J].中国流通经济, 2025, 39(2):16-29.LIAO Huijiao. Research on the UAV regulatory framework for the low-altitude economy:insights from U.S. experience[J]. China Business and Market, 2025, 39(2):16-29.

[4]黄巧龙,蔡雪雄.低空经济产业:发展现状、问题与政策建议[J].发展研究, 2024, 41(5):58-64.

[5] SHARMA A, VANJANI P, PALIWAL N, et al. Communication and networking technologies for UAVs:a survey[J]. Journal of Network and Computer Applications,2020, 168:102739.

[6] YE X, SONG F, ZHANG Z, et al. A review of small UAV navigation system based on multisource sensor fusion[J].IEEE Sensors Journal, 2023, 23(17):18926-18948.

[7]汤新民,顾俊伟,刘冰,等.低空监视技术及其发展趋势综述[J].南京航空航天大学学报, 2024, 56(6):973-993.TANG Xinmin, GU Junwei, LIU Bing, et al. Review on low-altitude surveillance technology and its development trend[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2024, 56(6):973-993.

[8]王俊潼,包丹文,周佳怡,等.低空空域规划研究现状与展望[J/OL].航空学报, 2024:1-26.(2024-10-30)[2025-03-01]. https://kns. cnki. net/kcms/detail/11.1929. V.20241029.1546.008.html.WANG Juntong, BAO Danwen, ZHOU Jiayi, et al. Lowaltitude airspace planning studies:a review and prospect[J/OL]. Acta Aeronautica et Astronautica Sinica, 2024:1-26.(2024-10-30)[2025-03-01]. https://kns.cnki.net/kcms/detail/11.1929.V.20241029.1546.008.html.

[9] YANG J, WANG Y, HANG X, et al. A review on airspace design and risk assessment for urban air mobility[J].IEEE Access, 2024, 12:157599-157611.

[10] SHAO Q, LI R, DONG M, et al. An adaptive airspace model for quadcopters in urban air mobility[J]. IEEE Transactions on Intelligent Transportation Systems,2023, 24(2):1702-1711.

[11] PONGSAKORNSATHIEN N, BIJJAHALLI S, GARDI A, et al. A performance-based airspace model for unmanned aircraft systems traffic management[J]. Aerospace, 2020, 7(11):154.

[12]丁杰,王迪.基于强化学习的城市低空无人机路径规划[J].交通运输工程与信息学报, 2025, 23(2):189-206.DING Jie, WANG Di. Urban low-altitude UAV path planning based on reinforcement learning[J]. Journal of Transportation Engineering and Information, 2025, 23(2):189-206.

[13]张洪海,李姗,夷珈,等.城市低空航路规划研究综述[J].南京航空航天大学学报, 2021, 53(6):827-838.ZHANG Honghai, LI Shan, YI Jia, et al. Review on urban low-altitude air route planning[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2021, 53(6):827-838.

[14]张宏宏,甘旭升,辛建霖,等.无人机运行风险评估及不确定性综述[J].科学技术创新, 2020(10):18-19.

[15]苗建国,王剑宇,张恒,等.无人机故障诊断技术研究进展概述[J].仪器仪表学报, 2020, 41(9):56-69.MIAO Jianguo, WANG Jianyu, ZHANG Heng, et al. Review of the development of fault diagnosis technology for unmanned aerial vehicle[J]. Chinese Journal of Scientific Instrument, 2020, 41(9):56-69.

[16]李林莉,程旗,张荔,等.反无人机技术研究现状综述[J].飞航导弹, 2021(11):25-32.

[17]付其喜,梁晓龙,张佳强,等.无人机低空交通管理系统综述[J].飞行力学, 2019, 37(2):1-6.FU Qixi, LIANG Xiaolong, ZHANG Jiaqiang, et al.Overview of low altitude air traffic management system for UAS[J]. Flight Dynamics, 2019, 37(2):1-6.

[18]梁曼玉.无人机自适应通信链路的设计与实现[D].南京:东南大学, 2021.LIANG Manyu. Design and implementation of UAV adaptive communication[D]. Nanjing:Southeast University, 2021.

[19] JAWHAR I, MOHAMED N, AL-JAROODI J, et al.Communication and networking of UAV-based systems:classification and associated architectures[J]. Journal of Network and Computer Applications, 2017, 84:93-108.

[20] HUANG Y, XU J, QIU L, et al. Cognitive UAV communication via joint trajectory and power control[C]//2018IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC). Kalamata:IEEE, 2018:1-5.

[21] PENG J, ZHANG Z, WU Q, et al. Anti-jamming communications in UAV swarms:a reinforcement learning approach[J]. IEEE Access, 2019, 7:180532-180543.

[22] TAO Q, SU G, CHEN B, et al. Secrecy energy efficiency maximization for UAV enabled communication systems[C]//2021 30th Wireless and Optical Communications Conference(WOCC). Taipei:IEEE, 2021:240-244.

[23]胡实,熊俊,马东堂,等.一种面向无人机通信的协作干扰安全传输技术[J].信号处理, 2022, 38(7):1525-1534.HU Shi, XIONG Jun, MA Dongtang, et al. Cooperative interference secure transmission in UAV communication system[J]. Journal of Signal Processing, 2022, 38(7):1525-1534.

[24]刘亚群,谢钧,邢长友,等.飞行自组网拓扑控制研究综述[J].通信学报, 2023, 44(8):195-214.LIU Yaqun, XIE Jun, XING Changyou, et al. Comprehensive survey on topology control for flying ad-hoc network[J]. Journal on Communications, 2023, 44(8):195-214.

[25] BEKMEZCI?, SAHINGOZ O K, TEMEL?. Flying adhoc networks(FANETs):a survey[J]. Ad Hoc Networks,2013, 11(3):1254-1270.

[26] KHAN M A, QURESHI I M, KHANZADA F. A hybrid communication scheme for efficient and low-cost deployment of future flying ad-hoc network(FANET)[J].Drones, 2019, 3(1):16.

[27] ARAFAT M Y, MOH S. A Q-learning-based topologyaware routing protocol for flying ad hoc networks[J].IEEE Internet of Things Journal, 2022, 9(3):1985-2000.

[28] WU J, ZOU L, ZHAO L, et al. A multi-UAV clustering strategy for reducing insecure communication range[J].Computer Networks, 2019, 158:132-142.

[29] LI J, CHENG R, ZHU J, et al. Wireless secure communication involving UAV:an overview of physical layer security[J]. MATEC Web of Conferences, 2021, 336:04005.

[30] ZHAO J, GAO F, JIA W, et al. Integrated sensing and communications for UAV communications with jittering effect[J]. IEEE Wireless Communications Letters, 2023,12(4):758-762.

[31]孙启禄,王桂胜,王叶群,等.频谱能量均衡的低空智联网无人系统信道干扰协同管理[J].计算机应用研究, 2024, 41(12):3801-3806.SUN Qilu, WANG Guisheng, WANG Yequn, et al. Spectrum energy balance coordinated for unmanned systems by channel interference in low-altitude intelligent network[J]. Application Research of Computers, 2024, 41(12):3801-3806.

[32] HU S, RU L, LV M, et al. Evolutionary game analysis of behaviour strategy for UAV swarm in communicationconstrained environments[J]. IET Control Theory&Applications, 2024, 18(3):350-363.

[33]王伟,张诗壮,李晓帆,等. 5G-Advanced技术及应用[J].中兴通讯技术, 2024, 30(4):69-76.WANG Wei, ZHANG Shizhuang, LI Xiaofan, et al. 5Gadvanced technology and applications[J]. ZTE Technology Journal, 2024, 30(4):69-76.

[34] MIAO Y F, WANG L, ZHANG G A, et al. Weather threat assessment based on dynamic Bayesian network[J]. Applied Ecology and Environmental Research,2019, 17(4):9391-9400.

[35] DUDEK A, KUNSTMANN F, STUTZ P, et al. Detect and avoid of weather phenomena on-board UAV:increasing detection capabilities by information fusion[C]//2021 IEEE/AIAA 40th Digital Avionics Systems Conference(DASC). San Antonio:IEEE, 2021:1-7.

[36] RADZKI G, BOCEWICZ G, NIELSEN P, et al. UAV fleet routing under weather and customer orders uncertainty parameters[C]//2023 IEEE International Conference on Fuzzy Systems(FUZZ). Incheon:IEEE, 2023:1-6.

[37]郭琪磊,桑为民,牛俊杰,等.复杂气象条件下考虑结冰风险的无人机飞行策略[J].航空学报, 2023, 44(1):627518.GUO Qilei, SANG Weimin, NIU Junjie, et al. UAV flight strategy considering icing risk under complex meteorological conditions[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1):627518.

[38] ZHAO H, WANG Z. Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended Kalman filter for data fusion[J]. IEEE Sensors Journal, 2012, 12(5):943-953.

[39] GYAGENDA N, HATILIMA J V, ROTH H, et al. A review of GNSS-independent UAV navigation techniques[J]. Robotics and Autonomous Systems, 2022, 152:104069.

[40] CHANG Y, WANG Y, SHEN Y, et al. A new fuzzy strong tracking cubature Kalman filter for INS/GNSS[J].GPS Solutions, 2021, 25(3):120.

[41] TAGHIZADEH S, SAFABAKHSH R. An integrated INS/GNSS system with an attention-based hierarchical LSTM during GNSS outage[J]. GPS Solutions, 2023, 27(2):71.

[42] LU Y, XUE Z, XIA G S, et al. A survey on vision-based UAV navigation[J]. Geo-spatial Information Science,2018, 21(1):21-32.

[43] WANG C, WANG J, WANG J, et al. Deep-reinforcement-learning-based autonomous UAV navigation with sparse rewards[J]. IEEE Internet of Things Journal,2020, 7(7):6180-6190.

[44] HE L, AOUF N, SONG B. Explainable Deep Reinforcement Learning for UAV autonomous path planning[J].Aerospace Science and Technology, 2021, 118:107052.

[45]郭子恒,蔡晨晓.基于改进深度强化学习的无人机自主导航方法[J].信息与控制, 2023, 52(6):736-746,772.GUO Ziheng, CAI Chenxiao. Autonomous navigation algorithm of UAV based on improved deep-reinforcementlearning[J]. Information and Control, 2023, 52(6):736-746, 772.

[46] HUANG H, YANG Y, WANG H, et al. Deep reinforcement learning for UAV navigation through massive MIMO technique[J]. IEEE Transactions on Vehicular Technology, 2019, 69(1):1117-1121.

[47] YIN Y, WANG Z, ZHENG L, et al. Autonomous UAV navigation with adaptive control based on deep reinforcement learning[J]. Electronics, 2024, 13(13):2432.

[48] BAYERLEIN H, THEILE M, CACCAMO M, et al.Multi-UAV path planning for wireless data harvesting with deep reinforcement learning[J]. IEEE Open Journal of the Communications Society, 2021, 2:1171-1187.

[49] WANG R, DU J, XIONG Z, et al. Hierarchical collaborative navigation method for UAV swarm[J]. Journal of Aerospace Engineering, 2021, 34(1):04020097.

[50] CAO Z, CHEN G. Research on collaborative multi-UAV localization method based on combination navigation information[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2024, 238(21):10426-10438.

[51] KERNS A J, SHEPARD D P, BHATTI J A, et al. Unmanned aircraft capture and control via GPS spoofing[J]. Journal of Field Robotics, 2014, 31(4):617-636.

[52] HE D, CHAN S, GUIZANI M. Communication security of unmanned aerial vehicles[J]. IEEE Wireless Communications, 2017, 24(4):134-139.

[53] WEI X, WANG Y, SUN C. PerDet:machine-learningbased UAV GPS spoofing detection using perception data[J]. Remote Sensing, 2022, 14(19):4925.

[54] DANG Y, BENZA?D C, YANG B, et al. Deep-ensemblelearning-based GPS spoofing detection for cellular-connected UAVs[J]. IEEE Internet of Things Journal, 2022,9(24):25068-25085.

[55] ESHMAWI A A, UMER M, ASHRAF I, et al. Enhanced machine learning ensemble approach for securing small unmanned aerial vehicles from GPS spoofing attacks[J].IEEE Access, 2024, 12:27344-27355.

[56]陈晓,毛烨炳. ADS-B技术在低空空域安全中应用的现状与展望[J].电子测量技术, 2022, 45(20):61-67.CHEN Xiao, MAO Yebing. Status and prospect of ADSB technology application in low-altitude airspace security[J]. Electronic Measurement Technology, 2022, 45(20):61-67.

[57] NIJSURE Y A, KADDOUM G, GAGNON G, et al.Adaptive air-to-ground secure communication system based on ADS-B and wide-area multilateration[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5):3150-3165.

[58] BELWAFI K, ALKADI R, ALAMERI S A, et al. Unmanned aerial vehicles’remote identification:a tutorial and survey[J]. IEEE Access, 2022, 10:87577-87601.

[59]王尔申,宋远上,徐嵩,等.基于“北斗”的低空空域通航飞机导航监视技术研究[J].南京航空航天大学学报, 2019, 51(5):586-591.WANG Ershen, SONG Yuanshang, XU Song, et al. Navigation and surveillance technology based on“BeiDou”for general aviation aircraft in low altitude airspace[J].Journal of Nanjing University of Aeronautics&Astronautics, 2019, 51(5):586-591

[60] XUE P, JIN G, LU L, et al. The key technology and simulation of UAV flight monitoring system[C]//2016 IEEE Advanced Information Management, Communicates,Electronic and Automation Control Conference(IMCEC). Xi’an:IEEE, 2016:1551-1557.

[61] ITKIN M, KIM M, PARK Y. Development of cloudbased UAV monitoring and management system[J]. Sensors, 2016, 16(11):1913.

[62] ZHOU J, WANG Y H, MENG L, et al. An on-line monitoring and warning system of multi-rotor VAV[C]//20183rd International Conference on System Reliability and Safety(ICSRS). Barcelona:IEEE, 2018:268-272.

[63] SHI Z, ZHANG J, SHI G, et al. Autonomous UAV safety oriented situation monitoring and evaluation system[J]. Drones, 2024, 8(7):308.

[64] SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. Metropolis:Relating airspace structure and capacity for extreme traffic densities[C]//ATM seminar 2015, 11th USA/EUROPE Air Traffic Management R&D Seminar.Lisboa:Archive Ouverte, 2015:hal-01168662.

[65]廖小罕,黄耀欢,徐晨晨.面向无人机应用的低空空域资源研究探讨[J].地理学报, 2021, 76(11):2607-2620.LIAO Xiaohan, HUANG Yaohuan, XU Chenchen.Views on the study of low-altitude airspace resources for UAV applications[J]. Acta Geographica Sinica, 2021, 76(11):2607-2620.

[66] AIR A P. Revising the airspace model for the safe integration of small unmanned aircraft systems[J]. Amazon Prime Air, 2015, 5:36.

[67]权在昕,武丁杰,高嘉静,等.城市低空空中交通及无人机路径规划研究综述[J].航空计算技术, 2024, 54(2):121-126.QUAN Zaixin, WU Dingjie, GAO Jiajing, et al. Overview of urban low altitude air mobility and UAV path planning[J]. Aeronautical Computing Technique, 2024,54(2):121-126.

[68] JANG D S, IPPOLITO C A, SANKARARAMAN S, et al. Concepts of airspace structures and system analysis for UAS traffic flows for urban areas[C]//AIAA Information Systems-AIAA Infotech@Aerospace. Grapevine:AIAA, 2017:0449.

[69] PANG B, DAI W, RA T, et al. A concept of airspace configuration and operational rules for UAS in current airspace[C]//2020 AIAA/IEEE 39th Digital Avionics Systems Conference(DASC). San Antonio:IEEE, 2020:1-9.

[70] LEE U J, AHN S J, CHOI D Y, et al. Airspace designs and operations for UAS traffic management at low altitude[J]. Aerospace, 2023, 10(9):737.

[71] SPIRKOVSKA L, KULKARNI C S, WATKINS J, et al.Urban air mobility airspace dynamic density[C]//AIAA AVIATION 2022 Forum. Chicago:AIAA, 2022:3403.

[72] VERMA S, DULCHINOS V, WOOD R D, et al. Design and analysis of corridors for UAM operations[C]//2022IEEE/AIAA 41st Digital Avionics Systems Conference(DASC). Portsmouth:IEEE, 2022:1-10.

[73] SACHARNY D, HENDERSON T C, CLINE M. Largescale UAS traffic management(UTM)structure[C]//2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems(MFI). Karlsruhe:IEEE, 2020:7-12.

[74] SACHARNY D, HENDERSON T C, MARSTON V V.Lane-based large-scale UAS traffic management[J].IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10):18835-18844.

[75]李安醍,李诚龙,武丁杰,等.结合跳点引导的无人机随机搜索避撞决策方法[J].航空学报, 2020, 41(8):323726.LI Anti, LI Chenglong, WU Dingjie, et al. Collision avoidance decision method for UAVs in random search combined with jump point guidance[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):323726.

[76]徐晨晨,廖小罕,岳焕印,等.基于改进蚁群算法的无人机低空公共航路构建方法[J].地球信息科学学报,2019, 21(4):570-579.XU Chenchen, LIAO Xiaohan, YUE Huanyin, et al.Construction of a UAV low-altitude public air route based on an improved ant colony algorithm[J]. Journal of Geo-Information Science, 2019, 21(4):570-579.

[77] MOHAMED SALLEH M F B, CHI W, WANG Z, et al.Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]//2018 AIAA Information Systems-AIAA Infotech@Aerospace. Kissimmee:AIAA, 2018:2260.

[78]徐晨晨,叶虎平,岳焕印,等.城镇化区域无人机低空航路网迭代构建的理论体系与技术路径[J].地理学报, 2020, 75(5):917-930.XU Chenchen, YE Huping, YUE Huanyin, et al. Iterative construction of UAV low-altitude air route network in an urbanized region:Theoretical system and technical roadmap[J]. Acta Geographica Sinica, 2020, 75(5):917-930.

[79] QUAN Q, LI M, FU R. Sky highway design for dense traffic[J]. IFAC-PapersOnLine, 2021, 54(2):140-145.

[80] CARY L, COYNE J. ICAO unmanned aircraft systems(UAS), circular 328[J]. UVS International, Blyenburgh&Co, 2011, 2012:112-115.

[81] BULUSU V, POLISHCHUK V. A threshold based airspace capacity estimation method for UAS traffic management[C]//2017 Annual IEEE International Systems Conference(SysCon). Montreal:IEEE, 2017:1-7.

[82]张洪海,夷珈,李姗,等.低空空域容量评估研究综述[J].交通运输工程学报, 2023, 23(6):78-93.ZHANG Honghai, YI Jia, LI Shan, et al. Review on research of low-altitude airspace capacity evaluation[J].Journal of Traffic and Transportation Engineering, 2023,23(6):78-93.

[83] SWEDISH W J. Upgraded faa airfield capacity model.volume i. supplemental user's guide[R]. Alexandria:NTIS, 1981.

[84] SWEDISH W J, MITRE CORP MCLEAN VA METREK DIV. Upgraded FAA airfield capacity model, Volume 2:technical description of revisions[R]. Alexandria:NTIS, 1981.

[85] PARAMBATH S K. Capacity of ATC sectors in Chennai upper area control centre[C]//2020 IEEE International Conference on Electronics, Computing and Communication Technologies(CONECCT). Bangalore:IEEE, 2020:1-7.

[86]王强,左杰俊,钟琦,等.基于AnyLogic仿真的中小机场容量评估分析[J].航空计算技术, 2020, 50(3):21-24.WANG Qiang, ZUO Jiejun, ZHONG Qi, et al. Capacity evaluation analysis of small and medium airports based on AnyLogic simulation[J]. Aeronautical Computing Technique, 2020, 50(3):21-24.

[87] KAGEYAMA K. ATC procedures modeling for capacity estimation of Japanese airspace[C]//AIAA Modeling and Simulation Technologies Conference. Grapevine:AIAA,2017:0805.

[88] MOHAMED M, RONG S. Neural partial differentiationbased estimation of terminal airspace sector capacity[J].SAE International Journal of Aerospace, 2021, 14(2):1-14-02-0010.

[89]赵征.空域容量评估与预测技术研究[D].南京:南京航空航天大学, 2015.ZHAO Zheng. Research on Airspace Capacity Assessment and Forecast[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015.

[90] ZHANG K, LIU Y, WANG J, et al. Tree-based airspace capacity estimation[C]//2020 Integrated Communications Navigation and Surveillance Conference(ICNS).Herndon:IEEE, 2020:5C1-1-5C1-8.

[91] CHEN J, CAI K, LI W, et al. An airspace capacity estimation model based on spatio-temporal graph convolutional networks considering weather impact[C]//2021IEEE/AIAA 40th Digital Avionics Systems Conference(DASC). San Antonio:IEEE, 2021:1-7.

[92] BULUSU V, POLISHCHUK V, SENGUPTA R, et al.Capacity estimation for low altitude airspace[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Denver:AIAA, 2017:4266.

[93] BULUSU V, SENGUPTA R, MUELLER E R, et al. A throughput based capacity metric for low-altitude airspace[C]//2018 Aviation Technology, Integration, and Operations Conference. Atlanta:AIAA, 2018:3032.

[94] CHO J, YOON Y. How to assess the capacity of urban airspace:a topological approach using keep-in and keepout geofence[J]. Transportation Research Part C:Emerging Technologies, 2018, 92:137-149.

[95] JENIE Y I, VAN KAMPEN E J, ELLERBROEK J, et al.Safety assessment of a UAV CD&R system in high density airspace using Monte Carlo simulations[J]. IEEE Transactions on Intelligent Transportation Systems,2018, 19(8):2686-2695.

[96] AARTS M J M, ELLERBROEK J, KNOOP V L. Capacity of a constrained urban airspace:Influencing factors,analytical modelling and simulations[J]. Transportation Research Part C:Emerging Technologies, 2023, 152:104173.

[97] HOEKSTRA J, ELLERBROEK J, SUNIL E, et al. Geovectoring:Reducing traffic complexity to increase the capacity of UAV airspace[C]//ICRAT 2018:2018 International Conference on Research in Air Transportation.Barcelona:TUDelft, 2018.

[98] HABA R, MANO T, UEDA R, et al. Routing and scheduling optimization for urban air mobility fleet management using quantum annealing[J]. Scientific Reports,2025, 15:4326.

[99] WEI Q, NILSSON G, COOGAN S. Capacity-constrained urban air mobility scheduling[DB/OL].(2021-07-02)[2025-02-18]. https://arxiv.org/abs/2107.02900v1.

[100] ZHANG J, QIN X, ZHANG M. Multi-aircraft scheduling optimization in urban environments[J]. Applied Mathematical Modelling, 2025, 145:116118.

[101] NG H K. Strategic planning with unscented optimal guidance for urban air mobility[C]//AIAA AVIATION2020 FORUM. Reston:AIAA, 2020:2904.

[102] WEI Q, NILSSON G, COOGAN S. Safe schedule verification for urban air mobility networks with node closures[J]. IEEE Transactions on Control of Network Systems, 2024, 11(2):855-866.

[103] WEI Q, NILSSON G, COOGAN S. Scheduling of urban air mobility services with limited landing capacity and uncertain travel times[C]//2021 American Control Conference(ACC). New Orlean:IEEE, 2021:1681-1686.

[104] POOLADSANJ M, SAVLA K. VertiSync:a traffic management policy with maximum throughput for ondemand urban air mobility networks[C]//2023 IEEE26th International Conference on Intelligent Transportation Systems(ITSC). Bilbao:IEEE, 2023:1727-1732.

[105] NEOGI N A, MURTHY S, BHARADWAJ S. Scheduling for Urban Air Mobility using Safe Learning[R]//20th International Conference on Software Engineering and Formal Methods. Munich:Langley Research Center, 2022:20220014263.

[106] KRISSHNAKUMAR P, WITTER J, PAUL S, et al.Fast decision support for air traffic management at urban air mobility vertiports using graph learning[C]//2023 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Detroit:IEEE, 2023:1580-1585.

[107] KUMAR P K, WITTER J, PAUL S, et al. Graph learning based decision support for multi-aircraft take-off and landing at urban air mobility vertiports[C]//AIAA SCITECH 2023 Forum. National Harbor, MD&Online. Reston:AIAA, 2023:1848.

[108] YANG X, WEI P. Autonomous free flight operations in urban air mobility with computational guidance and collision avoidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9):5962-5975.

[109] RUBíB, MORCEGO B, PéREZ R. Quadrotor path following and reactive obstacle avoidance with deep reinforcement learning[J]. Journal of Intelligent&Robotic Systems, 2021, 103(4):62.

[110] MEHDITABRIZI A, SAMADZAD M, SABZEKAR S.A deep reinforcement learning approach to assess the low-altitude airspace capacity for urban air mobility[DB/OL].(2023-01-23)[2025-02-26]. https://arxiv.org/abs/2301.09758v1.

[111] WU P, YANG X, WEI P, et al. Safety assured online guidance with airborne separation for urban air mobility operations in uncertain environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10):19413-19427.

[112] BERTRAM J, WEI P, ZAMBRENO J. A fast Markov decision process-based algorithm for collision avoidance in urban air mobility[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9):15420-15433.

[113] LOU J, YUKSEK B, INALHAN G, et al. An RRT*based method for dynamic mission balancing for urban air mobility under uncertain operational conditions[C]//2021 IEEE/AIAA 40th Digital Avionics Systems Conference(DASC). San Antonio:IEEE, 2021:1-10.

[114] ALLOUCH A, CHEIKHROUHOU O, KOUB?A A, et al. UTM-chain:blockchain-based secure unmanned traffic management for Internet of drones[J]. Sensors,2021, 21(9):3049.

[115] XIE Y, GARDI A, LIANG M, et al. Hybrid AI-based4D trajectory management system for dense low altitude operations and Urban Air Mobility[J]. Aerospace Science and Technology, 2024, 153:109422.

[116] BHARADWAJ S, CARR S, NEOGI N, et al. Decentralized control synthesis for air traffic management in urban air mobility[J]. IEEE Transactions on Control of Network Systems, 2021, 8(2):598-608.

[117] BHARADWAJ S, CARR S, NEOGI N, et al. Traffic management for urban air mobility[M]//NASA Formal Methods. Cham:Springer International Publishing,2019:71-87.

[118] CUMMINGS C, MAHMASSANI H. Emergence of 4-D system fundamental diagram in urban air mobility traffic flow[J]. Transportation Research Record:Journal of the Transportation Research Board, 2021, 2675(11):841-850.

[119] WEI Q, GAO Z, CLARKE J P, et al. Risk-aware urban air mobility network design with overflow redundancy[J]. Transportation Research Part B:Methodological,2024, 185:102967.

[120] SANTOS M C P, ROSALES C D, SARCINELLI-FILHO M, et al. A novel null-space-based UAV trajectory tracking controller with collision avoidance[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6):2543-2553.

[121] PARK J, CHO N. Collision avoidance of hexacopter UAV based on LiDAR data in dynamic environment[J]. Remote Sensing, 2020, 12(6):975.

[122] PRIMATESTA S, SCANAVINO M, LORENZINI A, et al. A cloud-based vehicle collision avoidance strategy for unmanned aircraft system traffic management(UTM)in urban areas[C]//2020 IEEE 7th International Workshop on Metrology for AeroSpace(MetroAeroSpace). Pisa:IEEE, 2020:309-313.

[123] MARCHIDAN A, BAKOLAS E. Collision avoidance for an unmanned aerial vehicle in the presence of static and moving obstacles[J]. Journal of Guidance, Control,and Dynamics, 2019, 43(1):96-110.

[124] YASIN J N, MOHAMED S A S, HAGHBAYAN M H,et al. Unmanned aerial vehicles(UAVs):collision avoidance systems and approaches[J]. IEEE Access,2020, 8:105139-105155.

[125] XUE M. Urban air mobility conflict resolution:centralized or decentralized?[C]//AIAA AVIATION 2020 FORUM. Reston:AIAA, 2020:3192.

[126] SHAO Q, SHAO M, LU Y. Terminal area control rules and eVTOL adaptive scheduling model for multi-vertiport system in urban air Mobility[J]. Transportation Research Part C:Emerging Technologies, 2021, 132:103385.

[127] QU W, XU C, TAN X, et al. Preliminary concept of urban air mobility traffic rules[J]. Drones, 2023, 7(1):54.

[128] DENNEY E, PAI G, JOHNSON M. Towards a rigorous basis for specific operations risk assessment of UAS[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference(DASC). London:IEEE, 2018:1-10.

[129] KOH C H, LOW K H, LI L, et al. Weight threshold estimation of falling UAVs(Unmanned Aerial Vehicles)based on impact energy[J]. Transportation Research Part C:Emerging Technologies, 2018, 93:228-255.

[130] BLOM H A P, JIANG C, GRIMME W B A, et al. Third party risk modelling of Unmanned Aircraft System operations, with application to parcel delivery service[J].Reliability Engineering&System Safety, 2021, 214:107788.

[131]钟罡,励瑾,张晓玮,等.物流无人机对地风险评估方法研究[J].交通运输系统工程与信息, 2022, 22(4):246-254.ZHONG Gang, LI Jin, ZHANG Xiaowei, et al. A risk assessment method of logistics drones on ground[J].Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4):246-254.

[132]刘继新,蒋伶潇,刘禹汐,等.无人机冲突探测与解脱技术研究概述[J].科学技术与工程, 2023, 23(26):11081-11089.LIU Jixin, JIANG Lingxiao, LIU Yuxi, et al. Review of unmanned aerial vehicle conflict detection and resolution technology[J]. Science Technology and Engineering, 2023, 23(26):11081-11089.

[133] ZHAO Z, ZHANG L, ZHOU R, et al. A flight risk field model for advanced low-altitude transportation system using field theory[J]. Transportation Research Part A:Policy and Practice, 2024, 190:104268.

[134] PUCHALSKI R, GIERNACKI W. UAV fault detection methods, state-of-the-art[J]. Drones, 2022, 6(11):330.

[135] FOURLAS G K, KARRAS G C. A survey on fault diagnosis and fault-tolerant control methods for unmanned aerial vehicles[J]. Machines, 2021, 9(9):197.

[136]安雪,李少波,张仪宗,等.无人机飞控系统故障诊断技术研究综述[J].计算机工程与应用, 2023, 59(24):1-15.AN Xue, LI Shaobo, ZHANG Yizong, et al. Review of fault diagnosis techniques for UAV flight control systems[J]. Computer Engineering and Applications,2023, 59(24):1-15.

[137] HANSEN S, BLANKE M. Diagnosis of airspeed measurement faults for unmanned aerial vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems,2014, 50(1):224-239.

[138] LóPEZ-ESTRADA F R, PONSART J C, THEILLIOL D, et al. LPV model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV[J]. Journal of Intelligent&Robotic Systems, 2016, 84(1):163-177.

[139] YOUN W, RYU H, JANG D, et al. Model-aided synthetic airspeed estimation of UAVs for analytical redundancy[J]. IEEE Robotics and Automation Letters,2021, 6(3):5841-5848.

[140] YE X, SONG F, ZHANG Z, et al. Semi-aerodynamic model-aided invariant Kalman filtering for UAV fullstate estimation[J]. IEEE Sensors Journal, 2024, 24(16):25920-25939.

[141] GUO D, ZHONG M, JI H, et al. A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors[J]. Neurocomputing,2018, 319:155-163.

[142]李晨,王布宏,田继伟,等.基于LSTM-OCSVM的无人机传感器数据异常检测[J].小型微型计算机系统,2021, 42(4):700-705.LI Chen, WANG Buhong, TIAN Jiwei, et al. Anomaly detection method for UAV sensor data based on LSTMOCSVM[J]. Journal of Chinese Computer Systems,2021, 42(4):700-705.

[143] AHMAD M W, AKRAM M U, MOHSAN M M, et al.Transformer-based sensor failure prediction and classification framework for UAVs[J]. Expert Systems with Applications, 2024, 248:123415.

[144] MA H J, LIU Y, LI T, et al. Nonlinear high-gain observer-based diagnosis and compensation for actuator and sensor faults in a quadrotor unmanned aerial vehicle[J].IEEE Transactions on Industrial Informatics, 2019, 15(1):550-562.

[145] WANG B, SHEN Y, ZHANG Y. Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties[J]. Aerospace Science and Technology, 2020, 99:105745.

[146] ZHAO P, LIU X, KWAN M P, et al. Unveiling cabdrivers’dining behavior patterns for site selection of‘taxi canteen’using taxi trajectory data[J]. Transportmetrica A:Transport Science, 2020, 16(1):137-160.

[147] HE C, HUO X, WANG C, et al. LESO-based fault estimation for actuators of quadrotor UAV[C]//2021 33rd Chinese Control and Decision Conference(CCDC).Kunming:IEEE, 2021:2066-2071.

[148] QI J, SONG D, WU C, et al. KF-based adaptive UKF algorithm and its application for rotorcraft UAV actuator failure estimation[J]. International Journal of Advanced Robotic Systems, 2012, 9(4):132.

[149] ZHONG Y, ZHANG Y, ZHANG W, et al. Robust actuator fault detection and diagnosis for a quadrotor UAV with external disturbances[J]. IEEE Access, 2018, 6:48169-48180.

[150] GAO J, ZHANG Q, CHEN J. EKF-based actuator fault detection and diagnosis method for tilt-rotor unmanned aerial vehicles[J]. Mathematical Problems in Engineering, 2020, 2020(1):8019017.

[151] OLYAEI M H, JALALI H, NOORI A, et al. Fault detection and identification on UAV system with CITFA algorithm based on deep learning[C]//Electrical Engineering(ICEE), Iranian Conference on. Mashhad:IEEE, 2018:988-993.

[152] SONG J, SHANG W, AI S, et al. Model and data-driven combination:a fault diagnosis and localization method for unknown fault size of quadrotor UAV actuator based on extended state observer and deep forest[J].Sensors, 2022, 22(19):7355.

[153] AL-HADDAD L A, JABER A A. An intelligent fault diagnosis approach for multirotor UAVs based on deep neural network of multi-resolution transform features[J]. Drones, 2023, 7(2):82.

[154]李润泽,姜斌,余自权,等.基于数据驱动的无人机集群故障检测与诊断[J].北京航空航天大学学报,2024, 50(5):1586-1592.LI Runze, JIANG Bin, YU Ziquan, et al. Data-driven fault detection and diagnosis for UAV swarms[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(5):1586-1592.

[155] ZHOU H, ZHAO H, HUANG H, et al. Autonomous recovery control of the UAV spiral based on flight statecognition[C]//2015 34th Chinese Control Conference(CCC). Hangzhou:IEEE, 2015:481-488.

[156] SAIED M, LUSSIER B, FANTONI I, et al. Fault Diagnosis and Fault-Tolerant Control of an Octorotor UAV using motors speeds measurements[J]. IFAC-PapersOnLine, 2017, 50(1):5263-5268.

[157] MAGSINO E R, SAY M F, TAN J A. Achieving complete UAV delivery in the presence of motor failures[C]//2020 IEEE 10th Symposium on Computer Applications&Industrial Electronics(ISCAIE). Malaysia:IEEE, 2020:1-5.

[158] WANG B, LIU D, PENG Y, et al. Multivariate regression-based fault detection and recovery of UAV flight data[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6):3527-3537.

[159] HE Y, PENG Y, WANG S, et al. ADMOST:UAV flight data anomaly detection and mitigation via online subspace tracking[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(4):1035-1044.

[160] ZHONG J, ZHANG Y, WANG J, et al. Unmanned aerial vehicle flight data anomaly detection and recovery prediction based on spatio-temporal correlation[J].IEEE Transactions on Reliability, 2022, 71(1):457-468.

[161] JIA M, RAJA A, YUAN J. A hybrid delay-aware approach towards UAV flight data anomaly detection[C]//2023 International Conference on Computing, Networking and Communications(ICNC). Honolulu:IEEE, 2023:176-180.

[162] DICKER G, CHUI F, SHARF I. Quadrotor collision characterization and recovery control[C]//2017 IEEE International Conference on Robotics and Automation(ICRA). Singapore:IEEE, 2017:5830-5836.

[163] BATTISTON A, SHARF I, NAHON M. Attitude estimation for normal flight and collision recovery of a quadrotor UAV[C]//2017 International Conference on Unmanned Aircraft Systems(ICUAS). Miami:IEEE,2017:840-849.

[164] LIU Z, KARYDIS K. Toward impact-resilient quadrotor design, collision characterization and recovery control to sustain flight after collisions[C]//2021 IEEE International Conference on Robotics and Automation(ICRA). Xi’an:IEEE, 2021:183-189.

[165] HINZMANN T, STASTNY T, CADENA C, et al. Free LSD:prior-free visual landing site detection for autonomous planes[J]. IEEE Robotics and Automation Letters, 2018, 3(3):2545-2552.

[166] LOUREIRO G, DIAS A, MARTINS A, et al. Emergency landing spot detection algorithm for unmanned aerial vehicles[J]. Remote Sensing, 2021, 13(10):1930.

[167] NEPAL U, ESLAMIAT H. Comparing YOLOv3, YOLOv4 and YOLOv5 for autonomous landing spot detection in faulty UAVs[J]. Sensors, 2022, 22(2):464.

[168]李迪,肖敏,任东,等.融合语义分割与模糊推理的无人机应急降落选址算法[J].计算机工程与应用,2025, 61(1):174-185.LI Di, XIAO Min, REN Dong, et al. Integration of semantic segmentation and fuzzy reasoning for unmanned aerial vehicle emergency landing site selection algorithm[J]. Computer Engineering and Applications,2025, 61(1):174-185.

[169] CHEN C, CHEN S, HU G, et al. An auto-landing strategy based on pan-tilt based visual servoing for unmanned aerial vehicle in GNSS-denied environments[J]. Aerospace Science and Technology, 2021, 116:106891.

[170] CHEN J, ZHANG Y, LI J, et al. Integrated air-ground vehicles for UAV emergency landing based on graph convolution network[J]. IEEE Internet of Things Journal, 2022, 9(12):9106-9116.

[171] DU W, LIN J, DU B, et al. Autonomous emergency landing on 3D terrains:approaches for monocular vision-based UAVs[C]//2023 International Conference on Advanced Robotics and Mechatronics(ICARM).Sanya:IEEE, 2023:105-112.

[172] LI P, SATO R, HASEGAWA M, et al. Fundamental study on adaptive shock response control for emergency landing of UAVs and its experimental investigation[J]. IEEJ Journal of Industry Applications, 2024, 13(2):135-145.

[173] SEIDALIYEVA U, ILIPBAYEVA L, TAISSARIYEVA K, et al. Advances and challenges in drone detection and classification techniques:a state-of-the-art review[J]. Sensors, 2023, 24(1):125.

[174] LAU?YS A, RUDYS S, KINKA M, et al. Investigation of detection possibility of uavs using low cost marine radar[J]. Aviation, 2019, 23(2):48-53.

[175] RUDYS S, RAGULIS P, LAU?YS A, et al. Investigation of UAV detection by different solid-state marine radars[J]. Electronics, 2022, 11(16):2502.

[176] LIU S, QU J, WU R. HollowBox:an anchor-free UAV detection method[J]. IET Image Processing, 2022, 16(11):2922-2936.

[177] XIAO Y, ZHANG X. Micro-UAV detection and identification based on radio frequency signature[C]//20196th International Conference on Systems and Informatics(ICSAI). Shanghai:IEEE, 2019:1056-1062.

[178] XIE Y, JIANG P, GU Y, et al. Dual-source detection and identification system based on UAV radio frequency signal[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:2006215.

[179] ANWAR M Z, KALEEM Z, JAMALIPOUR A. Machine learning inspired sound-based amateur drone detection for public safety applications[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3):2526-2534.

[180]郭培培,李建良.音频无人机定位的时延估计模拟分析[J].声学技术, 2020, 39(5):650-654.GUO Peipei, LI Jianliang. Simulation analysis of time delay estimation in audio unmanned aerial vehicle location[J]. Technical Acoustics, 2020, 39(5):650-654.

[181] KABIR M S, NDUKWE I K, AWAN E Z S. Deep learning inspired vision based frameworks for drone detection[C]//2021 International Conference on Electrical, Communication, and Computer Engineering(ICECCE). Kuala Lumpur:IEEE, 2021:1-5.

[182] AL-QUBAYDHI N, ALENEZI A, ALANAZI T, et al.Detection of unauthorized unmanned aerial vehicles using YOLOv5 and transfer learning[J]. Electronics,2022, 11(17):2669.

[183] LI C, WANG X. Jamming research of the UAV GPS/INS integrated navigation system based on trajectory cheating[C]//2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics(CISP-BMEI). Datong:IEEE, 2016:1113-1117.

[184] JIN W C, KIM K, CHOI J W. Robust jamming algorithm for location-based UAV jamming system[C]//2019 IEEE Asia-Pacific Microwave Conference(APMC). Singapore:IEEE, 2019:1581-1583.

[185] GUO Y, WU M, TANG K, et al. Covert spoofing algorithm of UAV based on GPS/INS-integrated navigation[J]. IEEE Transactions on Vehicular Technology, 2019,68(7):6557-6564.

[186] SVAIGEN A R, BOUKERCHE A, RUIZ L B, et al. Trajectory matters:impact of jamming attacks over the drone path planning on the Internet of drones[J]. Ad Hoc Networks, 2023, 146:103179.

[187]朱孟真,陈霞,刘旭,等.战术激光武器反无人机发展现状和关键技术分析[J].红外与激光工程, 2021, 50(7):188-200.ZHU Mengzhen, CHEN Xia, LIU Xu, et al. Situation and key technology of tactical laser anti-UAV[J]. Infrared and Laser Engineering, 2021, 50(7):188-200.

[188]吴玲,卢俊霖,许俊飞.激光武器反无人机集群建模与效能评估[J].激光与红外, 2022, 52(6):887-892.WU Ling, LU Junlin, XU Junfei. Modeling and effectiveness evaluation on UAV cluster interception using laser weapon systems[J]. Laser&Infrared, 2022, 52(6):887-892.

[189]赵鸿燕,周丽.国外高功率微波武器发展研究[J].航空兵器, 2023, 30(4):42-48.ZHAO Hongyan, ZHOU Li. Research on the development of high-power microwave weapon abroad[J].Aero Weaponry, 2023, 30(4):42-48.

[190] LUBKOWSKI G, LANZRATH M, LAVAU L C, et al.Response of the UAV sensor system to HPEM attacks[C]//2020 International Symposium on Electromagnetic Compatibility-EMC EUROPE. Rome:IEEE, 2020:1-6.

[191] SHRESTHA R, OH I, KIM S. A survey on operation concept, advancements, and challenging issues of urban air traffic management[J]. Frontiers in Future Transportation, 2021, 2:626935.

[192]张旭,焦庆宇.无人机空中交通管理体系架构研究[J].武汉理工大学学报, 2020, 42(9):29-37, 58.ZHANG Xu, JIAO Qingyu. Research on UAS air traffic management system architecture[J]. Journal of Wuhan University of Technology, 2020, 42(9):29-37, 58.

[193]宫夏屹,李伯虎,柴旭东,等.大数据平台技术综述[J].系统仿真学报, 2014, 26(3):489-496.GONG Xiayi, LI Bohu, CHAI Xudong, et al. Survey on big data platform technology[J]. Journal of System Simulation, 2014, 26(3):489-496.

[194] LI S, YANG Y, YANG L, et al. Civil aircraft big data platform[C]//2017 IEEE 11th International Conference on Semantic Computing(ICSC). San Diego:IEEE,2017:328-333.

[195] BEKKOUCHE O, TALEB T, BAGAA M. UAVs traffic control based on multi-access edge computing[C]//2018 IEEE Global Communications Conference(GLOBECOM). Abu Dhabi:IEEE, 2018:1-6.

[196] HARAGUCHI T, KATADA H, YAMAZAKI T, et al. A distributed UAV management system inspired by packet-switched networks[J]. IEICE Communications Express, 2024, 13(9):389-392.

[197] SHRESTHA R, BAJRACHARYA R, KIM S. 6G enabled unmanned aerial vehicle traffic management:a perspective[J]. IEEE Access, 2021, 9:91119-91136.

[198] GORUCU S, AMPATZIDIS Y. Drone Injuries and Safety Recommendations[J]. Edis, 2021, 2021(3):AE560.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2025.03.023

中图分类号:V328

引用信息:

[1]蔡铭,马川淇,朱华飒等.低空运行安全保障技术研究综述[J].交通运输工程与信息学报,2025,23(03):1-26.DOI:10.19961/j.cnki.1672-4747.2025.03.023.

基金信息:

深圳市科技计划项目(KJZD20240903104106009); 中国工程院院地合作项目(2024-DFZD-18-03)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文