nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.23 156-170
融合步行环境影响的出行方式选择行为模型
基金项目(Foundation): 国家自然科学基金面上项目(52472339); 重庆市交通科技项目(CQJT-CZKJ2024-05); 智能警务四川省重点实验室开放课题项目(ZNJW2024KFMS007)
邮箱(Email): chenjian@cqjtu.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2024.10.007
摘要:

【背景】步行环境作为城市交通系统的重要组成部分,其质量直接影响居民的出行体验和常规公交、轨道交通等方式的选择。然而现有相关研究未充分考虑步行环境对居民出行意向的定量影响,步行环境的量化也缺乏主客观指标的共同表征。【目标】针对现有研究的不足,本文旨在深入分析步行环境对城市居民出行方式选择的影响机制。【方法】通过引入主观规范、态度、步行环境等9个潜变量以更准确地刻画不同出行方式选择行为的心理决策过程,创新性地应用图像识别技术与个人主观感知指标共同表征步行环境变量,并采用结构方程模型刻画各心理潜变量间的相互关系,以及9个潜变量与其对应的测量变量之间的关系,进而构建融合步行环境影响的出行方式选择行为混合模型,以提升模型对出行者决策行为的预测精度和解释力。【结果】以重庆中心城区的出行者为实例分析对象,结果表明,步行环境对步行方式选择的影响最大(0.665),其次是对常规公交(0.663)、轨道交通(0.384)和小汽车(0.304)的影响。此外,考虑步行环境等潜变量的SEM-MNL模型的拟合优度由0.275 2提升至0.454 4,表明引入步行环境的模型解释性更强。【应用】研究结果可加深对城市居民出行方式选择行为的认识,为改善城市步行环境、提高居民绿色出行意愿奠定良好的理论基础。

Abstract:

[Background] As an important component of urban transportation system, the quality of pedestrian environments directly affects residents' travel experiences and choices of conventional public transportation, rail transit and other modes. However, existing research has not fully considered the quantitative impact of pedestrian environments on travel intentions, and the quantification of pedestrian environments lacks a common representation of subjective and objective indicators.[Objective] In response to the shortcomings of existing research, this study aims to deeply analyze the impact mechanism of the pedestrian environment on urban residents' travel mode choices.[Methods] By introducing nine latent variables such as subjective norms, attitudes, and walking environment to more accurately depict the psychological decision-making process of different travel mode choice behaviors, innovative image recognition technology and personal subjective perception indicators were applied to jointly characterize the walking environment variables. Structural equation modeling was used to characterize the interrelationships between various psychological latent variables, as well as the relationships between the nine latent variables and their corresponding measurement variables. A mixed model of travel mode choice behavior considering the influence of the walking environment was constructed to improve the predictive accuracy and explanatory power of the model regarding the decision-making behavior of travelers. [Results] Considering travelers in the central urban area of Chongqing as an example, the results showed that the walking environment had the greatest impact on the choice of walking mode(0.665), followed by the impact on conventional public transportation(0.663), rail transit(0.384), and cars(0.304). In addition, the goodness of fit of the SEM-MNL model considering latent variables such as the walking environment increased from 0.2752 to 0.4544, indicating that the model incorporating the walking environment had stronger interpretability. [Application] The research results can deepen our understanding of urban residents' travel mode choice behavior, improve the urban walking environment, and lay a good theoretical foundation to encourage eco-friendly travel.

参考文献

[1] YANG Y, WANG C, LIU W, et al. Understanding the determinants of travel mode choice of residents and its carbon mitigation potential[J]. Energy Policy, 2018, 115:486-493.

[2]龙瀛,李莉,李双金,等.中国城市活力中心的街道步行环境指数测度[J].南方建筑, 2021(1):114-120.LONG Ying, LI Li, LI Shuangjin, et al. Measurment of street walking environment index for urban vitality centers in Chinese cities[J]. South Architecture, 2021(1):114-120.

[3]杨俊宴,吴浩,郑屹.基于多源大数据的城市街道可步行性空间特征及优化策略研究:以南京市中心城区为例[J].国际城市规划, 2019, 34(5):33-42.YANG Junyan, WU Hao, ZHENG Yi. Research on characteristics and interactive mechanism of street walkability through multi-source big data:Nanjing central district as a case study[J]. Urban Planning International , 2019, 34(5):33-42.

[4]申洁,黄嘉欣,周婕,等.基于多维理论的城市住区建成环境步行性评价体系构建及应用:以武汉市为例[J].现代城市研究, 2021, 36(10):51-57.SHEN Jie, HUANG Jiaxin, ZHOU Jie, et al. Construction and application of walkability evaluation system for built environment of urban residential area based on multidimensional theory:a case study of Wuhan[J]. Modern Urban Research, 2021, 36(10):51-57.

[5] ASHALATHA R, MANJU V S, ZACHARIA A B. Mode choice behavior of commuters in thiruvananthapuram city[J]. Journal of Transportation Engineering, 2013, 139(5):494-502.

[6]陈坚,刘亮,穆礼彬,等.老年人公交出行意愿的影响因素和效应分析[J].交通运输工程与信息学报,2025,23(1):135-145.CHEN Jian, LIU Liang, MU Libin, et al. Analysis of factors influencing willingness of elderly people to travel using public transportation and their effects[J]. Journal of Transportation Engineering and Information, 2025, 23(1):135-145

[7]和占琼,姜玉婷,何明卫.城市通勤者低碳出行选择研究:基于TPB与VBN整合模型[J].干旱区资源与环境,2019, 33(4):89-95.HE Zhanqiong, JIANG Yuting, HE Mingwei. Study on urban low carbon travel choice based on TPB and VBN integration model[J]. Journal of Arid Land Resources and Environment, 2019, 33(4):89-95.

[8] HIRATSUKA J, PERLAVICIUTE G, STEG L. Testing VBN theory in Japan:relationships between values, beliefs, norms, and acceptability and expected effects of a car pricing policy[J]. Transportation Research Part F:Traffic Psychology and Behaviour, 2018, 53:74-83.

[9]张晓杰,胡侠义,王智奇.价值-信念-规范理论:公众环保行为研究的新框架[J].井冈山大学学报(社会科学版), 2017, 38(4):33-40.ZHANG Xiaojie, HU Xiayi, WANG Zhiqi. Value-beliefnorm theory:a new framework for public environmentprotection behavior studies[J]. Journal of Jinggangshan University(Social Sciences), 2017, 38(4):33-40.

[10]苏书杰.步行环境对出行安全感和出行行为的影响研究[D].西安:长安大学,2017.SU Shujie. The effects of walking environment on pedestrian security requirement and travel Activities[D].Xi’an:Chang’an University, 2017

[11]张瑞增,唐若迪,姚瑶,等. TPB-NAM框架下规模农户绿色优质农产品生产意愿研究:基于江苏省的调查数据[J].中国农业资源与区划, 2023, 44(4):184-194.ZHANG Ruizeng, TANG Ruodi, YAO Yao, et al. Study on the willingness of large-scale farmers to produce green and high-quality agricultural products under tpbnam framework:based on survey data of Jiangsu province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(4):184-194.

[12]万亚胜,程久苗,吴九兴,等.基于计划行为理论的农户宅基地退出意愿与退出行为差异研究[J].资源科学, 2017, 39(7):1281-1290.WAN Yasheng, CHENG Jiumiao, WU Jiuxing, et al. Differences between rural homestead exit intention and exit behavior based on theory of planned behavior[J]. Resources Science, 2017, 39(7):1281-1290.

[13]üNAL A B , LINDA S, JULIANA G.“To support or not to support, that is the question”. Testing the VBN theory in predicting support for car use reduction policies in Russia.[J] Transportation Research Part A:Policy and Practice, 2019, 119:73-81.

[14] LIU X, LU J. Gender differences in travel mode choice behavior in Zhenfeng City[J]. Applied Mechanics and Materials, 2013, 361:1906-1909.

[15]陈钰莹.基于混合选择模型的城际出行方式选择行为研究[D].开封:河南大学,2024.CHEN Yuying. Inter-city passenger travel mode choice behavior based on mixed choice model[D]. Kaifeng:Henan University, 2024.

[16] UJJWAL J, BANDYOPADHYAYA R. Development of comprehensive service quality assessment framework for sidewalks considering desired and actual conditions[J]. Transportation Letters, 2023, 15(3):227-241.

[17] ATASH F. Redesigning suburbia for walking and transit:emerging concepts[J]. Journal of urban planning and development, 1994, 120(1):48-57.

[18]和占琼,王婷.出行习惯和感知质量对低碳通勤出行行为的影响研究[J].生态经济, 2020, 36(7):105-112.HE Zhanqiong, WANG Ting. Study on the influence of travel habit and perceived quality on low carbon commuting behavior[J]. Ecological Economy, 2020, 36(7):105-112.

[19]钟异莹,邵毅明,陈坚.考虑居住环境的公共交通出行选择行为模型[J].科学技术与工程, 2020, 20(22):9217-9221.ZHONG Yiying, SHAO Yiming, CHEN Jian. Travel choice behavior model of public transportation considering residential environment[J]. Science Technology and Engineering, 2020, 20(22):9217-9221.

[20] XUAN W, ZHAO L. Research on correlation between spatial quality of urban streets and pedestrian walking characteristics in China based on street view big data[J].Journal of Urban Planning and Development, 2022, 148(4):05022035.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2024.10.007

中图分类号:U491

引用信息:

[1]邓颖,陈坚,高建杰等.融合步行环境影响的出行方式选择行为模型[J].交通运输工程与信息学报,2025,23(03):156-170.DOI:10.19961/j.cnki.1672-4747.2024.10.007.

基金信息:

国家自然科学基金面上项目(52472339); 重庆市交通科技项目(CQJT-CZKJ2024-05); 智能警务四川省重点实验室开放课题项目(ZNJW2024KFMS007)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文