nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, v.22;No.85 14-33
车路协车路协同环境下道路交通安全研究进展
基金项目(Foundation): 国家自然科学基金项目(52202411,52072108,52372326);; 安徽省重点研究与开发计划项目(2022k07020005,202304a05020050)
邮箱(Email): weihuazhang@hfut.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2023.11.014
摘要:

作为智慧交通发展的重要内容,车路协同技术通过人-车-路-环境之间实时通信主动感知交通安全风险,对预防道路交通事故具有重要作用。为了探究基于车路协同技术的道路交通安全研究进展,从车辆紧急碰撞与危险预警、车辆防追尾控制、不良驾驶行为分析、交叉口冲突分析及道路安全风险评估等方面概述了相关研究成果,梳理了相关研究方法、理论模型及系统架构,发现当前研究重点围绕微观驾驶行为建模和仿真评估、基于虚拟现实技术的驾驶模拟实践、多层次控制方法融合的评估与优化、安全场论视角下的道路风险评估等开展。通过梳理发现以下不足:首先,当前的碰撞模型构建过程存在一定限制,未综合考虑人-车-路-环境等关键特征要素,尤其基于驾驶人多维特征要素(如生理、心理、行为等)的碰撞风险建模不足,因此所建模型往往夸大或者低估实际风险水平,与此同时,多源信息获取与融合研究未充分考虑各种传感器和数据源的多样性,忽略了数据关联和权重分配的误差问题,尤其基于车载和路侧传感器融合的大范围道路交通信息感知研究亟待加强;其次,由于车路协同环境下驾驶人容易对自动驾驶系统产生过度依赖,从而丧失危险判断能力,目前研究缺乏对驾驶人判断决策变化机制、自动驾驶系统与驾驶人多模态交互机理、驾驶人安全接管可靠性评价的深入探讨;接着,对不良驾驶行为的研究尚缺少密集交通流条件下车辆集群间危险驾驶行为的量化分析,对车辆集群之间的交互作用和协同行为的研究亟待关注;最后,在交通冲突分析与安全风险评估方面,现有研究未探索一定时空范围多类型交通风险诱发与转化机理,基于多源交通风险叠加的道路交通安全量化评估仍是亟待解决的研究难题。综上,从感知融合、效能评价、集群分析、叠加量化等角度进行了未来展望,为车路协同环境下道路交通安全研究及技术应用提供参考。

Abstract:

As a major component of intelligent transportation systems,cooperative vehicle infrastruc‐ture technology actively identifies traffic safety risks through real-time communication between vehi‐cles,humans,roads,and the environment and thus plays a critical role in preventing road accidents.To explore the research progress of road traffic safety based on vehicle road coordination technology,this study summarizes the relevant research results in the fields of vehicle emergency collision and risk warning,vehicle anti-rear-end control,bad driving behavior analysis,intersection conflict analy‐sis,and road safety risk assessment,and combs the relevant research methods,theoretical models,and system architectures.Current research has focused on microscopic driving behavior modeling and simulation evaluation,driving simulation practice based on virtual reality technology,evaluation and optimization of multi-level control method fusion,and road risk assessment from the perspective of safety field theory.Through combing,the following deficiencies are found:First,some limitations exist with the current collision model construction process,and the key characteristic elements,such as the human-vehicle-road environment,have not been comprehensively considered.In particular,collision risk modeling based on multidimensional characteristic elements of the driver (such as phys‐iology,psychology,and behavior) is insufficient.Therefore,the model often exaggerates or underesti‐mates the actual risk levels.Simultaneously,multi-source information acquisition and fusion do not fully consider the diversity of various sensors and data sources and ignore errors related to data asso‐ciation and weight distribution.In particular,research on large-scale road traffic information percep‐tion based on vehicle and roadside sensor fusion must be strengthened.Second,due to the driver’s overreliance on automatic driving systems in a cooperative vehicle infrastructure environment,the driver loses the ability to judge dangers.To date,few studies have conducted in-depth investigations of the driver decision-making mechanism,multimode interaction mechanism between the automatic driving system and artificial driver,and reliability evaluation of the safety takeover of an artificial driver.Research on poor driving behavior still lacks a quantitative analysis of dangerous driving be‐havior between vehicle clusters under dense traffic flow conditions,and the interaction and coopera‐tive behavior between vehicle clusters must be investigated.Finally,in terms of traffic conflict analy‐sis and safety risk assessment,existing research has not explored the mechanism of multi-type traffic risk induction and transformation within a certain time and space range.The quantitative assessment of road traffic safety based on multisource traffic risk superposition remains an urgent research prob‐lem to be solved.This research was conducted from the perspectives of perception fusion,efficiency evaluation,cluster analysis,and superposition quantification,thus providing a reference for road traf‐fic safety research and technology applications in cooperative vehicle infrastructure environments.

参考文献

[1]公安部交通管理科学研究所. 2020年道路交通事故统计年报[R].无锡:公安部交通管理科学研究所,2020.

[2]中国公路学会,中国汽车工程学会,中国通信学会.车路协同自动驾驶系统(车路云一体化系统)协同发展框架[R].北京:中国公路学会,中国汽车工程学会,中国通信学会,2023.

[3]李松,张开碧,李永福,等.理想诱导环境下的网联车与网联自动驾驶车混合交通流建模研究[J].交通运输工程与信息学报, 2023, 21(3):31-58.LI Song, ZHANG Kaibi, LI Yongfu, et al. Modeling a mixed traffic flow of connected vehicles and connected autonomous vehicles in an ideal induction environment[J]. Journal of Transportation Engineering and Information, 2023, 21(3):31-58.

[4]卢春房,马成贤,江媛,等.中国车路协同产业研究与发展对策建议[J].中国公路学报, 2023, 36(3):225-233.LU Chunfang, MA Chengxian, JIANG Yuan, et al. Countermeasure suggestions of development and research for vehicle infrastructure cooperation industry in China[J].China Journal of Highway and Transport, 2023, 36(3):225-233.

[5]张毅,裴华鑫,姚丹亚.车路协同环境下车辆群体协同决策研究综述[J].交通运输工程学报, 2022, 22(3):1-18.ZHANG Yi, PEI Huaxin, YAO Danya. Research review on cooperative decision-making for vehicle swarms in vehicle-infrastructure cooperative environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3):1-18.

[6]杨晓光,赖金涛,张振,等.车路协同环境下的轨迹级交通控制研究综述[J].中国公路学报, 2023, 36(9):225-243.YANG Xiaoguang, LAI Jintao, ZHANG Zhen, et al. Review of trajectory based traffic control in a vehicle-infrastructure cooperative environment[J]. China Journal of Highway and Transport, 2023, 36(9):225-243.

[7] SAE International. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles[R]. Warrendale:SAE International, 2018.

[8]陈超,吕植勇,付姗姗,等.国内外车路协同系统发展现状综述[J].交通信息与安全, 2011, 29(1):102-105, 109.CHEN Chao, LU Zhiyong, FU Shanshan, et al. Overview of the development in cooperative vehicle-infrastructure system home and abroad[J]. Journal of Transport Information and Safety, 2011, 29(1):102-105, 109.

[9] HIROSHI MAK. Smartway project[R]. 12thITS World Congress. San Francisco:Intelligent Transportation Society of America. 2005.

[10] SUB D. A control strategy of urban expressway under CVIS[J]. International Journal of Simulation:Systems,Science&Technology, 2016,17(6):30-34.

[11]清华大学智能产业研究院(AIR).面向自动驾驶的车路协同关键技术与展望[R].北京:清华大学智能产业研究院(AIR), 2021.

[12]宋晓琳,熊琦玮,曹昊天.基于轨迹预测的车辆协同碰撞预警仿真研究[J].湖南大学学报(自然科学版),2016, 43(10):1-7.SONG Xiaolin, XIONG Qiwei, CAO Haotian. Research and simulation on cooperative collision warning based on trajectory prediction[J]. Journal of Hunan University(Natural Sciences), 2016, 43(10):1-7.

[13] WU Q, ZHOU S, PAN C, et al. Performance analysis of cooperative intersection collision avoidance with CV2X communications[C]//2020 IEEE 20th International Conference on Communication Technology(ICCT).Nanning:IEEE, 2020:757-762.

[14] PASHA M, FAROOQ M U, YASMEEN T, et al. Vehicular collision avoidance at intersection using V2I communications for road safety[M]//Innovations in Computer Science and Engineering. Singapore:Springer, 2020:23-31.

[15] WANG P W, WU W X, DENG X H, et al. Novel cooperative collision avoidance model for connected vehicles[J]. Transportation Research Record:Journal of the Transportation Research Board, 2017, 2645(1):144-156.

[16]杨澜,马佳荣,赵祥模,等.基于车路协同的高速公路车辆碰撞预警模型[J].公路交通科技, 2017, 34(9):123-129.YANG Lan, MA Jiarong, ZHAO Xiangmo, et al. A vehicle collision warning model in expressway scenario based on vehicle-infrastructure cooperation[J]. Journal of Highway and Transportation Research and Development, 2017, 34(9):123-129.

[17] GUIZAR A, MANNONI V, POLI F, et al. LTE-V2X performance evaluation for cooperative collision avoidance(CoCA)systems[C]//2020 IEEE 92nd Vehicular Technology Conference(VTC2020-Fall). Victoria:IEEE,2020:1-5.

[18]刘锴,贾洁,刘超,等.车路协同环境下道路无信号交叉口防碰撞系统警示效果[J].中国公路学报, 2018, 31(4):222-230.LIU Kai, JIA Jie, LIU Chao, et al. Warning effectiveness of vehicle-to-infrastructure cooperative crossing collision prevention system at non-signal controlled intersection[J]. China Journal of Highway and Transport, 2018,31(4):222-230.

[19] MUSHTAQ A, HAQ I U, NABI W U, et al. Traffic flow management of autonomous vehicles using platooning and collision avoidance strategies[J]. Electronics, 2021,10(10):1221.

[20] DENG R, DI B, SONG L. Cooperative collision avoidance for overtaking maneuvers in cellular V2X-based autonomous driving[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5):4434-4446.

[21] LYU N, WEN J, WU C. Novel time-delay side-collision warning model at non-signalized intersections based on vehicle-to-infrastructure communication[J]. International Journal of Environmental Research and Public Health,2021, 18(4):1520.

[22] XU Y, GE Y, WEI D, et al. V2V test scenario-study on intersection collision warning[C]//2021 IEEE 93rd Vehicular Technology Conference(VTC2021-Spring). Helsinki:IEEE, 2021:1-5.

[23] XIANG C, ZHANG L, XIE X, et al. Multi-sensor fusion algorithm in cooperative vehicle-infrastructure system for blind spot warning[J]. International Journal of Distributed Sensor Networks, 2022, 18(5):15501329221100412.

[24] MITROPOULOS G K, KARANASIOU I S, HINSBERGER A, et al. Wireless local danger warning:cooperative foresighted driving using intervehicle communication[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):539-553.

[25] KIM J. A study on the development of traffic safety risk information sharing technology through vehicle-road cooperation[C]//2021 IEEE International Conference on Consumer Electronics(ICCE). Las Vegas:IEEE, 2021:1-3.

[26] XIN C, DAN L, SHUO H. Research on deceleration early warning model based on V2X[C]//2020 12th International Conference on Measuring Technology and Mechatronics Automation(ICMTMA). Phuket:IEEE, 2020:318-321.

[27] LI H J, ZHAO G G, YANG Y F, et al. Characteristics of vehicle spatiotemporal diagram under the emergency braking warning[J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(7):76-84.

[28]伍毅平,李海舰,赵晓华,等.车路协同雾天预警系统对车辆运行生态特性的影响[J].交通运输工程学报,2021, 21(4):259-268.WU Yiping, LI Haijian, ZHAO Xiaohua, et al. Effect of fog weather warning system under cooperative vehicle infrastructure on vehicle operating eco-characteristics[J]. Journal of Traffic and Transportation Engineering,2021, 21(4):259-268.

[29] CHANG X, LI H, QIN L, et al. Evaluation of cooperative systems on driver behavior in heavy fog condition based on a driving simulator[J]. Accident Analysis&Prevention, 2019, 128:197-205.

[30] YOU X, LU J, XUE J. Safety early warning and control system of expressway confluence zone based on vehicleroad cooperation[C]//2022 14th International Conference on Measuring Technology and Mechatronics Automation(ICMTMA). Changsha:IEEE, 2022:236-241.

[31]陈昭彰,陈广辉,罗江,等.基于高速公路车路协同的主动安全防控预警系统[J].中国交通信息化, 2022(1):114-116.

[32] CHEN L W, CHOU P C. BIG-CCA:beacon-less, infrastructure-less, and GPS-less cooperative collision avoidance based on vehicular sensor networks[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems,2016, 46(11):1518-1528.

[33] BASJARUDDIN N C, KUSPRIYANTO K, SUHENDAR S, et al. Hardware simulation of automatic braking system based on fuzzy logic control[J]. Journal of Mechatronics, Electrical Power, and Vehicular Technology,2016, 7(1):1-6.

[34] BASJARUDDIN N C, MARGANA D B, KUSPRIYANTO K, et al. Hardware simulation of advanced driver assistance systems based on fuzzy logic[J]. International Review on Modelling and Simulations(IREMOS),2018, 11(1):24-31.

[35] BASJARUDDIN N C, KUSPRIYANTO K, SAEFUDIN D, et al. Hardware simulation of active lane keeping assist based on fuzzy logic[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2017, 5(2):321.

[36] BASJARUDDIN N C, KUSPRIYANTO K, SAEFUDIN D, et al. Developing adaptive cruise control based on fuzzy logic using hardware simulation[J]. International Journal of Electrical and Computer Engineering(IJECE), 2014, 4(6):944-951.

[37] SUZUKI H, ISHIKURA T, MARUMO Y. Mitigation of rear-end collision risk based on intent inference of preceding car’s deceleration behavior[C]//2017 2nd IEEE International Conference on Intelligent Transportation Engineering(ICITE). Singapore:IEEE, 2017:194-197.

[38] MILANéS V, PéREZ J, GODOY J, et al. A fuzzy aid rear-end collision warning/avoidance system[J]. Expert Systems with Applications, 2012, 39(10):9097-9107.

[39] LI Y, WANG H, WANG W, et al. Evaluation of the impacts of cooperative adaptive cruise control on reducing rear-end collision risks on freeways[J]. Accident Analysis&Prevention, 2017, 98:87-95.

[40] LI Y, XING L, WANG W, et al. Evaluating impacts of different longitudinal driver assistance systems on reducing multi-vehicle rear-end crashes during small-scale inclement weather[J]. Accident Analysis&Prevention,2017, 107:63-76.

[41] YAO Z, HU R, JIANG Y, et al. Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways[J]. Journal of Safety Research,2020, 75:262-274.

[42] DAI Y, YANG Y, ZHONG H, et al. Stability and safety of cooperative adaptive cruise control vehicular platoon under diverse information flow topologies[J]. Wireless Communications and Mobile Computing, 2022(28):4534692.

[43] LIU Y, XU B, DING Y. Convergence analysis of cooperative braking control for interconnected vehicle systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(7):1894-1906.

[44]郑元,张羽,何蜀燕,等.多源时变延误下考虑信息同步的智能网联车队控制策略[J].交通运输工程与信息学报, 2022, 20(2):25-41.ZHENG Yuan, ZHANG Yu, HE Shuyan, et al. Control strategy for connected and automated vehicle platoon considering information synchronization under timevarying delays of multiple sources[J]. Journal of Transportation Engineering and Information, 2022, 20(2):25-41.

[45] CHEN D, SUN D H, LI Y, et al. Robust stabilization and H∞control of cooperative driving system with time delay in variable speed-limited area from cyber-physical perspective[J]. Asian Journal of Control, 2020, 22(1):373-387.

[46]李海舰,刘中华,陈开群,等.高速公路风险防控设施应用研究综述与展望[J].交通运输工程与信息学报,2024, 22(1):54-78.LI Haijian, LIU Zhonghua, CHEN Kaiqun, et al. Overview and prospect of the application of risk prevention and control facilities on freeways[J]. Journal of Transportation Engineering and Information, 2024, 22(1):54-78.

[47] MAO P, JI X, QU X, et al. A variable speed limit control based on variable cell transmission model in the connecting traffic environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10):17632-17643.

[48] LI Y, XU C, XING L, et al. Integrated cooperative adaptive cruise and variable speed limit controls for reducing rear-end collision risks near freeway bottlenecks based on micro-simulations[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11):3157-3167.

[49]仝秋红,曹扬,柴国庆,等.车路协同信息融合的智能汽车行驶状态模糊评判[J].中国公路学报, 2022, 35(6):254-264.TONG Qiuhong, CAO Yang, CHAI Guoqing, et al.Fuzzy evaluation of an intelligent-vehicle driving state based on a vehicle-road collaborative information fusion[J]. China Journal of Highway and Transport, 2022, 35(6):254-264.

[50] SAIPRASERT C, THAJCHAYAPONG S, PHOLPRASIT T, et al. Driver behaviour profiling using smartphone sensory data in a V2I environment[C]//2014 International Conference on Connected Vehicles and Expo(ICCVE). Vienna:IEEE, 2014:552-557.

[51]吕能超,王玉刚,周颖,等.道路交通安全分析与评价方法综述[J].中国公路学报, 2023, 36(4):183-201.LYU Nengchao, WANG Yugang, ZHOU Ying, et al. Review of road traffic safety analysis and evaluation methods[J]. China Journal of Highway and Transport, 2023,36(4):183-201.

[52] ZHANG J, ZHONG G, QIAO L L, et al. Modeling for single lane car-following safe distance under the environment of intelligent vehicle-infrastructure cooperation systems[C]//15th COTA International Conference of Transportation Professionals, Beijing:ASCE, 2015:455-465.

[53] LI T, WU J, CHAN C Y, et al. A cooperative lane change model for connected and automated vehicles[J]. IEEE Access, 2020, 8:54940-54951.

[54] ZHU Y, ZHAO K, LI H, et al. Trajectory planning algorithm using Gauss pseudo-spectral method based on vehicle-infrastructure cooperative system[J]. International Journal of Automotive Technology, 2020, 21(4):889-901.

[55] WU W, SUN R, LI Y, et al. Cooperative U-turn merging behaviors and their impacts on road traffic in CVIS environment[J]. Journal of Advanced Transportation, 2020:4158569.

[56] FARAH H, KOUTSOPOULOS H N. Do cooperative systems make drivers’car-following behavior safer?[J].Transportation Research Part C:Emerging Technologies, 2014, 41:61-72.

[57] FARAH H, KOUTSOPOULOS H N, SAIFUZZAMAN M, et al. Evaluation of the effect of cooperative infrastructure-to-vehicle systems on driver behavior[J].Transportation Research Part C:Emerging Technologies, 2012, 21(1):42-56.

[58]李雪玮,赵晓华,李振龙,等.基于雾天高速车路协同模拟驾驶的驾驶人视觉信息加工模式[J].华南理工大学学报(自然科学版), 2021, 49(3):131-138, 148.LI Xuewei, ZHAO Xiaohua, LI Zhenlong, et al. Driver’s visual information processing mode in foggy highway cooperative vehicle-infrastructure system environment based on simulated driving[J]. Journal of South China University of Technology(Natural Science Edition),2021, 49(3):131-138, 148.

[59] LIU J, CAI B G, WANG J. Cooperative localization of connected vehicles:integrating GNSS with DSRC using a robust cubature Kalman filter[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8):2111-2125.

[60]吴明先,许甜,刘建蓓,等.基于高频高精度定位信息的车辆轮廓冲突瞬时预测方法[J].中国公路学报,2019, 32(6):105-113.WU Mingxian, XU Tian, LIU Jianbei, et al. Instantaneous prediction of vehicle outline conflict using highfrequency and high-precision position information[J].China Journal of Highway and Transport, 2019, 32(6):105-113.

[61] QIAN X, GREGOIRE J, MOUTARDE F, et al. Prioritybased coordination of autonomous and legacy vehicles at intersection[C]//17th International IEEE Conference on Intelligent Transportation Systems(ITSC). Qingdao:IEEE, 2014:1166-1171.

[62] ZHOU G, MAO L, BAO T, et al. Construction of realtime dynamic reversible lane safety control model in intelligent vehicle infrastructure cooperative system[J].Applied Artificial Intelligence, 2023, 37(1):2177009

[63] ALONSO J, MILANéS V, PéREZ J, et al. Autonomous vehicle control systems for safe crossroads[J]. Transportation Research Part C:Emerging Technologies, 2011, 19(6):1095-1110.

[64] LONG K, MA C, JIANG Z, et al. Integrated optimization of traffic signals and vehicle trajectories at intersection with the consideration of safety during signal change[J]. IEEE Access, 2020, 8:170732-170741.

[65] REY D, LEVIN M W. Blue phase:Optimal network traffic control for legacy and autonomous vehicles[J]. Transportation Research Part B:Methodological, 2019, 130:105-129.

[66] AOKI S, RAJKUMAR R. V2V-based synchronous intersection protocols for mixed traffic of human-driven and self-driving vehicles[C]//2019 IEEE 25th International Conference on Embedded and Real-Time Computing Systems and Applications(RTCSA). Hangzhou:IEEE,2019:1-11.

[67] CAI M, XU Q, CHEN C, et al. Multi-lane unsignalized intersection cooperation with flexible lane direction based on multi-vehicle formation control[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6):5787-5798.

[68] STRYSZOWSKI M, LONGO S, VELENIS E, et al. A framework for self-enforced interaction between connected vehicles:intersection negotiation[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11):6716-6725.

[69] WANG H M, MOLNáR T G, AVEDISOV S S, et al.Conflict analysis for cooperative merging using V2X communication[C]//2020 IEEE Intelligent Vehicles Symposium(IV). Las Vegas:IEEE, 2020:1538-1543.

[70] YE S, FANG W, FU Y, et al. Dynamic time window intersection scheduling algorithm based on RSU and high precision map[C]//International Conference on Intelligent Transportation Engineering. Singapore:Springer,2022:113-129.

[71] XU B, LI S E, BIAN Y, et al. Distributed conflict-free cooperation for multiple connected vehicles at unsignalized intersections[J]. Transportation Research Part C:Emerging Technologies, 2018, 93:322-334.

[72] CAI B, ZHENG Z, SHANGGUAN W, et al. Unsignalized cooperative optimization control method based on vehicle speed guidance and information interaction[C]//17th International IEEE Conference on Intelligent Transportation Systems(ITSC). Qingdao:IEEE, 2014:57-62.

[73] CHEN R, HU J, LEVIN M W, et al. Stability-based analysis of autonomous intersection management with pedestrians[J]. Transportation Research Part C:Emerging Technologies, 2020, 114:463-483.

[74] LI Y, LIU Q. Intersection management for autonomous vehicles with vehicle-to-infrastructure communication[J]. PLoS One, 2020, 15(7):e0235644.

[75]陆建,程泽阳.道路交通网络安全风险辨识研究进展[J].东南大学学报(自然科学版), 2019, 49(2):404-412.LU Jian, CHENG Zeyang. Research and development of road traffic network security risk identification[J]. Journal of Southeast University(Natural Science Edition),2019, 49(2):404-412.

[76]程学庆,李月,舒继承,等.高速铁路运营安全风险管理研究[J].交通运输工程与信息学报, 2015, 13(4):23-28.CHENG Xueqing, LI Yue, SHU Jicheng, et al. Research of high speed railway operational safety risk management[J]. Journal of Transportation Engineering and Information, 2015, 13(4):23-28.

[77]高鹏,唐昭,杨坤洪,等.城市轨道交通运营设备安全风险评价[J].交通运输工程与信息学报, 2020, 18(1):91-98.GAO Peng, TANG Zhao, YANG Kunhong, et al. Safety risk assessment of urban rail transit operation equipment[J]. Journal of Transportation Engineering and Information, 2020, 18(1):91-98.

[78]王建强,吴剑,李洋.基于人-车-路协同的行车风险场概念、原理及建模[J].中国公路学报, 2016, 29(1):105-114.WANG Jianqiang, WU Jian, LI Yang. Concept, principle and modeling of driving risk field based on driver-vehicle-road interaction[J]. China Journal of Highway and Transport, 2016, 29(1):105-114.

[79]田野,裴华鑫,晏松,等.车路协同环境下行车风险场模型的扩展与应用[J].清华大学学报(自然科学版),2022, 62(3):447-457.TIAN Ye, PEI Huaxin, YAN Song, et al. Extended driving risk field model for i-VICS and its application[J].Journal of Tsinghua University(Science and Technology), 2022, 62(3):447-457.

[80] WANG J, WU J, LI Y. The driving safety field based on driver-vehicle-road interactions[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):2203-2214.

[81]熊坚,施锦浩,万华森.人车路综合风险场模型构建及驾驶风格评估[J].交通运输系统工程与信息, 2021, 21(6):105-114.XIONG Jian, SHI Jinhao, WAN Huasen. Modeling of driver-vehicle-road integrated risk field and driving style assessment[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6):105-114.

[82] WANG J, WU J, ZHENG X, et al. Driving safety field theory modeling and its application in pre-collision warning system[J]. Transportation Research Part C:Emerging Technologies, 2016, 72:306-324.

[83] SON Y S, KIM W. Cooperation-based risk assessment prediction for rear-end collision avoidance in autonomous lane change maneuvers[J]. Actuators, 2022, 11(4):98.

[84] THEMANN P, KOTTE J, RAUDSZUS D, et al. Impact of positioning uncertainty of vulnerable road users on risk minimization in collision avoidance systems[C]//2015 IEEE Intelligent Vehicles Symposium(IV). Seoul:IEEE, 2015:1201-1206.

[85] CHEN K P, HSIUNG P A. Vehicle collision prediction under reduced visibility conditions[J]. Sensors, 2018, 18(9):3026.

[86] LACHAPELLE D, HUMPHREYS T, NARULA L, et al.Automotive collision risk estimation under cooperative sensing[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Barcelona:IEEE, 2020:9200-9204.

[87] TAK S, YOON J, WOO S, et al. Sectional informationbased collision warning system using roadside unit aggregated connected-vehicle information for a cooperative intelligent transport system[J]. Journal of Advanced Transportation,2020:1528028.

[88] CHEN C, XIANG H, QIU T, et al. A rear-end collision prediction scheme based on deep learning in the internet of vehicles[J]. Journal of Parallel and Distributed Computing, 2018, 117:192-204.

[89] WANG W, ZHENG M, WAN J, et al. Advanced driver assistance systems and risk identification in cooperative vehicle infrastructure system environment[C]//2019 5th International Conference on Transportation Information and Safety(ICTIS). Liverpool:IEEE, 2019:337-343.

[90] YU K, PENG L, DING X, et al. Prediction of instantaneous driving safety in emergency scenarios based on connected vehicle basic safety messages[J]. Journal of Intelligent and Connected Vehicles, 2019, 2(2):78-90.

[91]孙川,吴超仲,褚端峰,等.弯道安全车速计算改进模型研究[J].中国公路学报, 2015, 28(8):101-108.SUN Chuan, WU Chaozhong, CHU Duanfeng, et al. Improved model study of safety speed calculation in curves[J]. China Journal of Highway and Transport, 2015, 28(8):101-108.

[92] HE Y, YAN X, LU X Y, et al. Rollover risk assessment and automated control for heavy duty vehicles based on vehicle-to-infrastructure information[J]. IET Intelligent Transport Systems, 2019, 13(6):1001-1010.

[93] CAI B, WANG C, SHANGGUAN W, et al. Research of information interaction simulation method in Cooperative Vehicle Infrastructure System[C]//17th International IEEE Conference on Intelligent Transportation Systems(ITSC). Qingdao:IEEE, 2014:45-50.

[94] EBERT J, NEWTON O, O’REAR J, et al. Leveraging aviation risk models to combat cybersecurity threats in vehicular networks[J]. Information, 2021, 12(10):390.

[95] DUARTE E K, DA COSTA L A L F, ERNEBERG M, et al. SafeSmart:a VANET system for faster responses and increased safety in time-critical scenarios[J]. IEEE Access, 2021, 9:151590-151606.

[96] COLL-PERALES B, SCHULTE-TIGGES J, RONDINONE M, et al. Prototyping and evaluation of infrastructure-assisted transition of control for cooperative automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7):6720-6736.

[97] ZHU J, MA Y, LOU Y. Multi-vehicle interaction safety of connected automated vehicles in merging area:a realtime risk assessment approach[J]. Accident Analysis&Prevention, 2022, 166:106546.

[98] JIN W, ISLAM M, CHOWDHURY M. Risk-based merging decisions for autonomous vehicles[J]. Journal of Safety Research, 2022, 83:45-56.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2023.11.014

中图分类号:U492.8;U495

引用信息:

[1]程泽阳,孙凌霞,丁恒等.车路协车路协同环境下道路交通安全研究进展[J].交通运输工程与信息学报,2024,22(03):14-33.DOI:10.19961/j.cnki.1672-4747.2023.11.014.

基金信息:

国家自然科学基金项目(52202411,52072108,52372326);; 安徽省重点研究与开发计划项目(2022k07020005,202304a05020050)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文