nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.23 74-87
城市飞行汽车停机坪选址问题研究一:基于双层规划的多目标优化方法
基金项目(Foundation): 国家自然科学基金委资助项目(72288101); 北京市自然科学基金资助项目(L241036)
邮箱(Email): hdyin@bjtu.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2025.04.003
摘要:

【背景】飞行汽车作为未来交通领域的颠覆性创新技术,在解决城市交通问题等方面发挥重要作用。然而停机坪等基础设施的规划建设作为飞行汽车安全高效运行的前提,存在布局欠缺合理、进展相对滞后等问题,难以满足多元化低空运行服务需求。【目标】通过优化停机坪的选址布局,减少飞行汽车运营成本及地面潜在客伤风险,同时提升乘客出行效率,以期在运营成本、运行风险及乘客服务等多方面取得平衡。【方法】本文建立了基于双层规划的城市飞行汽车停机坪选址多目标优化方法,其中上层以飞行汽车运营成本最小化及潜在客伤风险最小化为目标建立了0-1整数规划模型,下层则考虑乘客出行路径选择行为的多样性,建立了考虑无人小巴与飞行汽车融合的多模式网络系统最优配流模型。进而,设计了融合改进自适应禁忌搜索与Frank-Wolfe的求解算法。【数据】利用公开的Sioux Falls网络及OD需求数据,并考虑停机坪数量及不同目标权重比构建算例。【结果】数值实验结果表明,本文提出的方法能够确定最优的停机坪数量,并显著降低运营风险及成本,选址方案也更为合理。

Abstract:

[Background] As a paradigm-shifting innovation within the realm of future transportation,flying cars have emerged as a pivotal solution to urban traffic congestion and mobility challenges. Nevertheless, the current infrastructure for such vehicles, including the suboptimal locations of vertiports and sluggish construction timelines, has thus far hindered the technology's ability to fulfill a wide spectrum of service requirements. [Objective] This study aims to enhance the strategic distribution of vertiports for flying cars in an urban setting. By doing so, it aims to mitigate operational expenses and ground-level passenger safety risks associated with flying car operations, while concurrently boosting passenger travel efficiency. The overarching objective is to harmonize the operational costs, passenger risk, and quality of service to achieve an optimal balance. [Methods] The research introduces a bi-level programming framework using multi-objective optimization to determine optimal vertiport locations. The upper level utilizes a 0-1 integer programming approach to minimize operational costs and potential passenger injury risks. Conversely, the lower level incorporates the variability in passenger route choice behavior into a multimodal network user equilibrium assignment model that integrates unmanned shuttles with flying cars. To address this complex model, a heuristic solution algorithm based on tabu search and Frank-Wolfe algorithms was designed. [Data] To validate the proposed model and algorithm, the research leverages publicly accessible Sioux Falls network data along with origin-destination(OD) demand matrices. By varying the number of vertiports and adjusting the weight ratios of the different objectives, numerous scenarios were constructed to assess the efficacy of the developed approaches. [Results] The findings from numerical experiments reveal that the location strategies derived from this method, when compared to conventional approaches, may incur a marginal increase in aggregate operating costs. Although there is a slight increase in flight-related risks, there is a considerably greater reduction in the overall operating costs, making it a more reasonable approach.

参考文献

[1]张洪海,邹依原,张启钱,等.未来城市空中交通管理研究综述[J].航空学报, 2021, 42(7):82-106.ZHANG Honghai, ZOU Yiyuan, ZHANG Qiqian, et al.Future urban air mobility management:review[J]. Chinese Journal of Aeronautics, 2021, 42(7):82-106.

[2]丁杰,王迪.基于强化学习的城市低空无人机路径规划[J].交通运输工程与信息学报, 2025, 23(2):189-206.DING Jie, WANG Di. Urban low-altitude UAVs path planning based on reinforcement learning[J]. Journal of Transportation Engineering and Information, 2025, 23(2):189-206.

[3] VASCIK P, HANSMAN R J. Systems-level analysis of on demand mobility for aviation[D]. Cambridge:Massachusetts Institute of Technology, 2017.

[4] VASCIK P D, HANSMAN R J. Evaluation of key operational constraints affecting on-demand mobility for aviation in the los angeles basin:ground infrastructure, air traffic control and noise[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Denver:AIAA, 2017:3084.

[5] VASCIK P D, HANSMAN R J. Constraint identification in on-demand mobility for aviation through an exploratory case study of los angeles[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Denver:AIAA, 2017:3083.

[6] VASCIK P D, HANSMAN R J. Scaling constraints for urban air mobility operations:air traffic control, ground infrastructure, and noise[C]//2018 Aviation Technology,Integration, and Operations Conference. Atlanta:AIAA2018:3849.

[7]杨振宇,隋东,周婷婷,等.空中航路点通行能力评估与优化方法[J].交通运输工程与信息学报, 2024, 22(2):163-172.YANG Zhenyu, SUI Dong, ZHOU Tingting, et al. Evaluation and optimization method for air waypoint capacity[J]. Journal of Transportation Engineering and Information, 2024, 22(2):163-172.

[8]凌帅,杨娟,孙鹏,等.多目标协同下的即时配送路径优化[J/OL].交通运输工程与信息学报:1-24(2024-09-30)[2025-01-30]. https://link. cnki. net/doi/10.19961/j.cnki.1672-4747.2024.06.008.LING Shuai, YANG Juan, SUN Peng, et al. The multiobjective instant delivery routing problem considering the labor rights and safety[J/OL]. Journal of Transportation Engineering and Information:1-24(2024-09-30)[2025-01-30]. https://link. cnki. net/doi/10.19961/j. cnki. 1672-4747.2024.06.008.

[9] FADHIL D N. A GIS-based analysis for selecting ground infrastructure locations for urban air mobility[D]. Munich:Technical University of Munich, 2018.

[10] CAMPBELL J F. A survey of network hub location[J].Studies in Locational Analysis, 1994, 6:31-49.

[11] KARA B Y. Modeling and analysis of issues in hub location problem[D]. Ankara:Bilkent University, 1999.

[12] GRABDL G, OSTGATHE M, CACHAY J, et al. The future of vertical mobility:sizing the market for passenger,inspection, and goods services until 2035[R]. Stuttgart:Porsche Consulting Gmbh, 2018.

[13] HUSSAIN A, METCALFE M, RUTGERS V. Infrastructure barriers to the elevated future of mobility[DB/OL].(2019-05-30)[2025-03-03]. https://www.deloitte.com/us/en/insights/topics/future-of-mobility/infrastructure-barriers-to-urban-air-mobility-with-VTOL.html.

[14]程珩,牟瑞芳.物流配送中心选址的重心法探讨[J].交通运输工程与信息学报, 2013, 11(1):91-95.CHENG Heng, MOU Ruifang. Discussion of the gravity center method for the selection of logistics distribution center location[J]. Journal of Transportation Engineering and Information, 2013, 11(1):91-95.

[15] KREIMEIER M, STUMPF E, GOTTSCHALK D. Economical assessment of air mobility on demand concepts with focus on Germany[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Washington D.C.:AIAA, 2016:3304.

[16] RAJENDRAN S, ZACK J. Insights on strategic air taxi network infrastructure locations using an iterative constrained clustering approach[J]. Transportation Research Part E:Logistics and Transportation Review, 2019, 128:470-505.

[17] LIM E, HWANG H. The selection of vertiport location for on-demand mobility and its application to Seoul metro area[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1):260-272.

[18] RATH S, CHOW J Y J. Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access[J]. Journal of Air Transport Management, 2022, 105:102294.

[19] HOLDEN J, GOEL N. Fast-forwarding to a future of ondemand urban air transportation[R]. San Francisco:Uber Elevate, 2016.

[20] KAI W, JACQUILLAT A, VAZE V. Vertiport planning for urban aerial mobility:an adaptive discretization approach[J]. Manufacturing&Service Operations Management, 2022, 24(6):3215-3235.

[21] VENKATESH N, PAYAN A P, JUSTIN C Y, et al. Optimal siting of sub-urban air mobility(sUAM)ground architectures using network flow formulation[C]//AIAA Aviation 2020 Forum. Reston:AIAA, 2020:2921.

[22] PRIMATESTA S, GUGLIERI G, RIZZO A. A riskaware path planning strategy for UAVs in urban environments[J]. Journal of Intelligent&Robotic Systems,2019, 95(2):629-643.

[23]中国民用航空局.城市场景轻小型无人驾驶航空器物流航线划设规范:MH/T 4054—2022[S].北京:中国民航出版社, 2022.

[24]陈一洲,尹浩东,孙旋,等.基于实时毒气影响的人群疏散路径优化研究[J].安全与环境学报, 2018, 18(6):2316-2321.CHEN Yizhou, YIN Haodong, SUN Xuan, et al. Optimalization for the crowd masses evacuation route based on the study of the impact of real-time gas leakage[J].Journal of Safety and Environment, 2018, 18(6):2316-2321.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2025.04.003

中图分类号:V351

引用信息:

[1]沈燕,卢恺,尹浩东等.城市飞行汽车停机坪选址问题研究一:基于双层规划的多目标优化方法[J].交通运输工程与信息学报,2025,23(03):74-87.DOI:10.19961/j.cnki.1672-4747.2025.04.003.

基金信息:

国家自然科学基金委资助项目(72288101); 北京市自然科学基金资助项目(L241036)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文