nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.23 88-102
城市飞行汽车停机坪选址问题研究二:面向轴辐式网络的多目标优化方法
基金项目(Foundation): 中央高校基本科研业务费专项资金资助(2025JBZY017); 北京市自然科学基金资助项目(L241036)
邮箱(Email): wujianjun@dlut.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2025.04.007
摘要:

【背景】随着城市交通拥堵问题日益严重,飞行汽车作为一种新型空中交通工具,能够有效缓解地面交通压力,但其停机坪的选址布局仍缺乏系统化研究,难以满足个性化的服务需求。【目标】本文旨在解决城市飞行汽车停机坪的选址优化问题,在考虑停机坪异质性的基础上,构建轴辐式网络结构,平衡建设成本、服务效率与安全裕度等多重目标,为城市飞行汽车停机坪的科学布局提供理论支撑。【方法】提出一种面向轴辐式网络的多目标优化方法,建立多目标规划模型,考虑建设成本、剩余未覆盖需求、总飞行时间、飞行汽车数量及配属关系惩罚,确定一级和二级停机坪的最优位置及配属关系,并且规划不同等级停机坪间的飞行路径,最终通过模拟退火算法和贪心算法结合局部搜索的混合方法求解优化问题。【数据】利用公开的Chicago Sketch网络及相关数据,并考虑一级停机坪建设数量及不同目标权重比。【结果】研究表明,轴辐式网络结构显著降低了停机坪建设成本,当一级停机坪数量为5个时,系统在性能和成本之间达到较好平衡。最优方案下,系统总飞行时间为279.8 min,平均每条路径飞行时间为46.7min,能够保证22.3%的能源安全裕度。

Abstract:

[Background] Novel, low-altitude transportation systems based on flying cars can potentially alleviate ground-traffic pressure(caused by increasing, severe, urban-traffic congestion).Personalized service demands require systematic research on vertiport siting(selection and layout).[Objective] This study addressed optimal vertiport-siting requirements in urban environments. To balance multiple objectives, such as construction costs, service efficiency, and safety margins, a huband-spoke network architecture incorporating vertiport heterogeneity was constructed. A theoretical foundation for scientifically informed urban vertiport siting was thereby provided. [Methods] A twostage optimization framework was proposed. Phase Ⅰ: a multi-objective programming model was developed to determine the optimal locations and affiliation relationships for primary and secondary vertiports, incorporating construction, coverage, and linkage costs. Phase Ⅱ: a route-planning model was formulated with to minimize total flight time, fleet size, and affiliation penalty. The optimization problem was solved using a hybrid approach that integrates simulated annealing, greedy algorithms,and local search strategies. [Data] The publicly available Chicago-Sketch network and related data were used, and the number of primary vertiports constructions and weighting ratio of different targets were considered. [Results] Our research demonstrated that the hub-and-spoke network structure significantly reduced vertiport construction costs, and the system achieved an optimal balance between performance and cost when five primary vertiports are deployed. Under the optimal configuration,the total flight time was 210.4 minutes, with an average flight time of 46.7 minutes per route, ensuring a 22.3% energy safety margin.

参考文献

[1]郜春海,朱力,苗佳,等.低空经济与城市轨道交通融合的技术路径与应用前景[J].都市快轨交通, 2025, 38(2):14-21.GAO Chunhai, ZHU Li, MIAO Jia, et al. Technological pathways and application prospects of low-altitude economy and rail transit integration[J]. Urban Rapid Rail Transit, 2025, 38(2):14-21.

[2]张洪海,邹依原,张启钱,等.未来城市空中交通管理研究综述[J],航空学报, 2021, 42(7):82-106.ZHANG Honghai, ZOU Yiyuan, ZHANG Qiqian, et al.Future urban air mobility management:review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):82-106.

[3]丁杰,王迪.基于强化学习的城市低空无人机路径规划[J].交通运输工程与信息学报, 2025, 23(2):189-206.DING Jie, WANG Di. Urban low-altitude UAVs path planning based on reinforcement learning[J]. Journal of Transportation Engineering and Information, 2025, 23(2):189-206.

[4] SOLANKI B, SANDERS P, MILLER E, et al. Federal aviation administration vertiport electrical infrastructure study[R]. Colorado:National Renewable Energy Laboratory(NREL), 2023.

[5] VASCIK P, HANSMAN R J. Systems-level analysis of on demand mobility for aviation[D]. Cambridge:Massachusetts Institute of Technology, 2017.

[6] VASCIK P D, HANSMAN R J. Evaluation of key operational constraints affecting on-demand mobility for aviation in the los angeles basin:ground infrastructure, air traffic control and noise[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Denver:AIAA, 2017:3084.

[7] VASCIK P D, HANSMAN R J. Constraint identification in on-demand mobility for aviation through an exploratory case study of los angeles[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Denver:AIAA, 2017:3083.

[8] VASCIK P D, HANSMAN R J. Scaling constraints for urban air mobility operations:air traffic control, ground infrastructure, and noise[C]//2018 Aviation Technology, Integration, and Operations Conference. Atlanta:AIAA,2018:3849.

[9] CAMPBELL J F. A survey of network hub location[J].Studies in Locational Analysis,1994, 6:31-49.

[10] KARA B Y. Modeling and analysis of issues in hub location problem[D]. Ankara:Bilkent University, 1999.

[11] GRABDL G, OSTGATHE M, CACHAY J, et al. The future of vertical mobility:sizing the market for passenger,inspection, and goods services until 2035[R]. Stuttgart:Porsche Consulting GmbH, 2018.

[12] HUSSAIN A, METCALFE M, RUTGERS V. Infrastructure barriers to the elevated future of mobility[J]. Deloitte Ser. Future Mobil, 2019.

[13] KREIMEIER M, STUMPF E, GOTTSCHALK D. Economical assessment of air mobility on demand concepts with focus on Germany[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Washington D.C.:AIAA, 2016:3304.

[14] RAJENDRAN S, ZACK J. Insights on strategic air taxi network infrastructure locations using an iterative constrained clustering approach[J]. Transportation Research Part E:Logistics and Transportation Review, 2019, 128:470-505.

[15] LIM E, HWANG H. The selection of vertiport location for on-demand mobility and its application to Seoul metro area[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1):260-272.

[16] RATH S, CHOW J Y J. Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access[J]. Journal of Air Transport Management, 2022, 105:102294.

[17] KAI W, JACQUILLAT A, VAZE V. Vertiport planning for urban aerial mobility:an adaptive discretization approach[J]. Manufacturing&Service Operations Management, 2022, 24(6):3215-3235.

[18]沈燕,卢恺,尹浩东,等.城市飞行汽车停机坪选址问题研究一:基于双层规划的多目标优化方法[J/OL].交通运输工程与信息学报, 2025:1-20(2025-05-12)[2025-05-20]. https://link. cnki. net/doi/10.19961/j.cnki.1672-4747.2025.04.003.SHEN Yan, LU Kai, YIN Haodong, et al. Locating urban flying car vertiports I:a multi-objective optimization method based on bi-level programming[J/OL]. Journal of Transportation Engineering and Information,2025:1-20(2025-05-12)[2025-05-20]. https://link.cnki.net/doi/10.19961/j.cnki.1672-4747.2025.04.003.

[19] O’KELLY M E. The location of interacting hub facilities[J]. Transportation Science, 1986, 20(2):92-106.

[20] ALUMUR S, KARA B Y. Network hub location problems:The state of the art[J]. European Journal of Operational Research, 2008, 190(1):1-21.

[21] DORLING K, HEINRICHS J, MESSIER G G, et al. Vehicle routing problems for drone delivery[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(1):70-85.

[22] TROUDI A, ADDOUCHE S A, DELLAGI S, et al. Sizing of the drone delivery fleet considering energy autonomy[J]. Sustainability, 2018, 10(9):3344.

[23]金凤君.我国航空客流网络发展及其地域系统研究[J].地理研究, 2001, 20(1):31-39.JIN Fengjun. A study on network of domestic air passenger flow in China[J]. Geographical Research, 2001, 20(1):31-39.

[24]杨忠振,于述南,陈刚.混合式航空货运网络优化[J].交通运输工程学报, 2016, 16(1):103-114.YANG Zhongzhen, YU Shunan, CHEN Gang. Optimzation of mixed air cargo transportation network[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1):103-114.

[25]曲欣宇,叶博嘉,程予,等.物流无人机城市低空轴辐式网络构建方法研究[J].山东科学, 2023, 36(6):86-95.QU Xinyu, YE Bojia, CHENG Yu, et al. The method to construct an urban logistics unmanned aerial vehicles low-altitude hub-and-spoke network[J]. Shandong Science, 2023, 36(6):86-95.

[26] WATSON-GANDY C, DOHRN P. Depot location with van salesmen:a practical approach[J]. Omega, 1973, 1(3):321-329.

[27] LAPORTE G, NOBERT Y. An exact algorithm for minimizing routing and operating costs in depot location[J].European Journal of Operational Research, 1981, 6(2):224-226.

[28] PRINS C, PRODHON C, CALVO R W. Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking[J].4OR-A Quarterly Journal of Operations Research, 2006,4(3):221-238.

[29] PRODHON C, PRINS C. A survey of recent research on location-routing problems[J]. European Journal of Operational Research, 2014, 238(1):1-17.

[30] ALBAREDA-SAMBOLA M. Location-routing and location-arc routing[M]//Location Science. Cham:Springer International Publishing, 2015:399-418.

[31] DREXL M, SCHNEIDER M. A survey of variants and extensions of the location-routing problem[J]. European Journal of Operational Research, 2015, 241(2):283-308.

[32] Federal Aviation Administration. FAA Releases Vertiport Design Standards to Support the Safe Integration of Advanced Air Mobility Aircraft[DB/OL].(2022-09-26)[2025-02-26]. https://futuretransport-news. com/faa-releases-design-guidelines-for-vertiport-infrastructure/.

[33] Uber Air. Eight firms reveal designs for Uber Air Skyports[EB/OL].(2019-06-20)[2025-02-26]. https://worldarchitecture. org/wa-top-teaser/ecefezzh/EightFirmsRevealDesignsForUberAirSkyports.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2025.04.007

中图分类号:V351

引用信息:

[1]尹浩东,沈燕,屈姝含等.城市飞行汽车停机坪选址问题研究二:面向轴辐式网络的多目标优化方法[J].交通运输工程与信息学报,2025,23(03):88-102.DOI:10.19961/j.cnki.1672-4747.2025.04.007.

基金信息:

中央高校基本科研业务费专项资金资助(2025JBZY017); 北京市自然科学基金资助项目(L241036)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文