718 | 10 | 30 |
下载次数 | 被引频次 | 阅读次数 |
乘客出行过程中,站点等待时间和车厢内拥挤程度会影响乘客满意度。传统的公交服务使用固定的路线和时刻表,无法动态响应乘客的实时请求。灵活线路公交在访问某些固定站点(检查点)的前提下,根据乘客提出的辅助运输请求,灵活制定公交运行路线,具有兼顾动态响应乘客出行需求和维持路线稳定性的特点。在制定灵活线路公交运行计划时,考虑公交运行过程中可能发生的时间扰动,可以提高计划的鲁棒性。本文考虑灵活线路公交运行过程中旅行时间的不确定性,以提升乘客乘车体验为出发点,建立鲁棒性较强的灵活线路公交车辆调度模型,尽可能减小站点的延迟成本和降低行程中的拥挤水平。本文使用旅行时间的平均绝对偏差作为不确定性的描述性统计量,构建了一个分布式鲁棒优化模型,通过对偶变换,将模型进一步转化为一个混合整数规划模型。数值实验的结果表明,提出的模型可以很好地降低站点延误水平和车内拥挤程度,提高乘客的乘车体验。模型提供更具鲁棒性的灵活线路公交运行方案能够提高灵活线路公交的服务水平,为运营和管理提供决策依据。
Abstract:During travel, excessive waiting times at stations and congestion in carriages can negatively impact passenger satisfaction. However, traditional public transportation services use fixed routes and schedules that cannot respond dynamically to real-time passenger requests.Flexible Route Transit has the ability to strike a balance between dynamically responding to passenger travel demand and maintaining route stability by flexibly developing transit routes based on passenger requests for auxiliary transportation while visiting certain fixed stops(checkpoints).Considering possible time disturbances that may occur during operations in the development of flexible bus route operation plan can improve the robustness of the plans.With the objective of improving the passengers' riding experience, we considered the uncertainty of travel times during the operation of flexible bus routes, and established a robust flexible bus route vehicle scheduling model to minimize station delay costs and congestion levels during travel. Specifically, we construct a distributed robust optimization model using the average absolute deviation of travel time as a descriptive statistic of uncertainty, and transform the robust optimization model into a mixed-integer planning model through dual transformation. The results of numerical experiments indicate that the proposed model can provide a more robust and flexible bus route operation scheme, which can well reduce the level of station delays and in-ride crowding, and thereby improve the riding experience. Thus, the flexible route bus operation plan provided by the proposed model can improve the service level of flexible route buses and provide a decision-making basis for operation and management.
[1]郑乐,李文权,孙春阳.灵活式公交运营规划研究综述[J].交通信息与安全, 2018, 36(5):1-9.ZHENG Yue, LI Wenquan, SUN Chunyang. A review of operation and planning of flexible transportation services[J]. Journal of Transport Information and Safety, 2018, 36(5):1-9.
[2] QUADRIFOGLIO L, HALL R W, DESSOUKY M M.Performance and design of mobility allowance shuttle transit services:bounds on the maximum longitudinal velocity[J]. Transportation Science, 2006, 40(3):351-363.
[3]厦门公交集团有限公司.探索运营新模式灵活公交跑起来[J].城市公共交通, 2020(4):86.
[4]安久煜,宋瑞,毕明凯,等.高铁车站接驳公交灵活线路优化设计研究[J].交通运输系统工程与信息,2019, 19(5):150-155, 176.AN Jiuyu, SONG Rui, BI Mingkai, et al. Optimization flexible route design for high-speed railway station feeder bus[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(5):150-155, 176.
[5] BECKER J, TEAL R, MOSSIGE R. Metropolitan transit agency’s experience operating general-public demand-responsive transit[J]. Transportation Research Record:Journal of the Transportation Research Board, 2013, 2352(1):136-145.
[6] DIKAS G, MINIS I. Scheduled paratransit transport systems[J]. Transportation Research Part B:Methodological,2014, 67:18-34.
[7]杜太升,陈明明.考虑时间窗的通勤定制公交线路优化[J].交通运输工程与信息学报,2023, 21(1):152-163.DU Taisheng, CHEN Mingming. Optimization of customized bus routes for commuting considering time windows[J]. Journal of Transportation Engineering and Information, 2023, 21(1):152-163.
[8] ZHENG Y, LI W, QIU F, et al. The benefits of introducing meeting points into flex-route transit services[J]. Transportation Research Part C:Emerging Technologies, 2019,106:98-112.
[9] PEI M, LIN P, DU J, et al. Operational design for a realtime flexible transit system considering passenger demand and willingness to pay[J]. IEEE Access, 2019, 7:180305-180315.
[10] QUADRIFOGLIO L, DESSOUKY M M, ORDó?EZ F.Mobility allowance shuttle transit(MAST)services:MIP formulation and strengthening with logic constraints[J]. European Journal of Operational Research, 2008,185(2):481-494.
[11] LIU X, QU X, MA X. Improving flex-route transit services with modular autonomous vehicles[J]. Transportation Research Part E:Logistics and Transportation Review, 2021, 149:102331.
[12] HUANG A, DOU Z, QI L, et al. Flexible route optimization for demand-responsive public transit service[J].Journal of Transportation Engineering, Part A:Systems,2020, 146(12):04020132.
[13] BRUNI M E, GUERRIERO F, BERALDI P. Designing robust routes for demand-responsive transport systems[J]. Transportation Research Part E:Logistics and Transportation Review, 2014, 70:1-16.
[14] LEE E, CEN X, LO H K, et al. Designing zonal-based flexible bus services under stochastic demand[J]. Transportation Science, 2021, 55(6):1280-1299.
[15] MA W, ZENG L, AN K. Dynamic vehicle routing problem for flexible buses considering stochastic requests[J].Transportation Research Part C:Emerging Technologies, 2023, 148:104030.
[16]李书新,李辉,张旭,等.基于乘客满意度的公共交通系统评价[J].交通科技与经济,2022, 24(2):18-23.LI Shuxin, LI Hui, ZHANG Xu, et al. Evaluation of public transportation system based on passenger satisfaction[J]. Technology&Economy in Areas of Communications, 2022, 24(2):18-23.
[17] ZHANG C, LIU Y, LU W, et al. Evaluating passenger satisfaction index based on PLS-SEM model:evidence from Chinese public transport service[J]. Transportation Research Part A:Policy and Practice, 2019, 120:149-164.
[18]张丽娜.基于乘客满意度的城市公交评价体系研究[J].交通世界, 2021(33):6-8.
[19]张文会,刘委,王圣鼎,等.基于结构方程的城市常规公交满意度评价[J].交通运输工程与信息学报, 2021,19(1):43-51.ZHANG Wenhui, LIU Wei, WANG Shengding, et al.Evaluation of passenger satisfaction to conventional public transit based on a structural equation[J]. Journal of Transportation Engineering and Information, 2021, 19(1):43-51.
[20] RONG R, LIU L, JIA N, et al. Impact analysis of actual traveling performance on bus passenger’s perception and satisfaction[J]. Transportation Research Part A:Policy and Practice, 2022, 160:80-100.
[21] WONG R C P, YANG L, SZETO W Y. Comparing passengers’satisfaction with fixed-route and demand-responsive transport services:empirical evidence from public light bus services in Hong Kong[J]. Travel Behaviour and Society, 2023, 32:100583.
[22] SOZA-PARRA J, RAVEAU S, MU?OZ J C. Public transport reliability across preferences, modes, and space[J]. Transportation, 2022, 49(2):621-640.
[23] SHAO M, XIE C, LI T, et al. Influence of in-vehicle crowding on passenger travel time value:insights from bus transit in Shanghai, China[J]. International Journal of Transportation Science and Technology, 2022, 11(4):665-677.
[24] LARRAIN H, MU?OZ J C, GIESEN R. Generation and design heuristics for zonal express services[J]. Transportation Research Part E:Logistics and Transportation Review, 2015, 79:201-212.
[25] DENTON B, GUPTA D. A sequential bounding approach for optimal appointment scheduling[J]. IIE Transactions, 2003, 35(11):1003-1016.
[26] QI J. Mitigating delays and unfairness in appointment systems[J]. Management Science, 2017, 63(2):566-583.
[27] WIESEMANN W, KUHN D, SIM M. Distributionally robust convex optimization[J]. Operations Research,2014, 62(6):1358-1376.
[28] LIN F, FANG X, GAO Z. Distributionally robust optimization:a review on theory and applications[J]. Numerical Algebra, Control&Optimization, 2022, 12(1):159.
[29] RAHIMIAN H, MEHROTRA S. Frameworks and results in distributionally robust optimization[J]. Open Journal of Mathematical Optimization, 2022, 3:1-85.
基本信息:
DOI:10.19961/j.cnki.1672-4747.2023.09.017
中图分类号:U491.17
引用信息:
[1]龙雲,周剑峰,方侃等.旅行时间不确定的灵活线路公交调度优化[J].交通运输工程与信息学报,2024,22(02):48-62.DOI:10.19961/j.cnki.1672-4747.2023.09.017.
基金信息:
国家自然科学基金项目(71971154)