nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.23 197-212
基于神经网络算法的城市轨道交通网弹性评估
基金项目(Foundation): 先进轨道交通自主运行全国重点实验室开放课题资助项目(RCS2023K001); 国家级大学生创新创业训练计划项目(202510004167)
邮箱(Email): xlv@bjtu.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2025.03.018
摘要:

【背景】轨道交通作为城市交通的重要组成部分,其网络结构日益复杂,客运量也在不断攀升。保障轨道交通系统的高效运行对于维护城市的经济、社会稳定具有重要意义,然而在日常运营中频繁发生的随机扰动事件对轨道交通网的稳定性构成严峻挑战,严重干扰城市的运转秩序。【目标】系统解析轨道交通网在扰动事件中的动态响应机制,量化评估轨道交通网面对扰动事件的性能,帮助识别网络中的关键环节,为轨道交通网的资源配置及应急管理提供科学依据。【方法】基于复杂网络和弹性三角形理论,综合考虑轨道交通网拓扑结构、乘客出行合理路径、轨道交通流,提出了一种基于神经网络算法的城市轨道交通网络弹性评估方法。【数据】以北京市轨道交通网络为例,研究随机扰动下轨道交通网弹性的变化。【结论】构建的弹性评估模型能够全面评估轨道交通网在面对随机扰动时的性能维持能力,量化分析网络中关键节点和线路,突破传统静态网络分析方法局限,对保障轨道交通网的安全稳定、提升城市综合交通效能具有重要意义。

Abstract:

[Background] As an important component of urban transportation, rail transit has developed rapidly in terms of its network structure to accommodate increasing passenger traffic volume.The efficient operation of rail transportation systems is vital to the sustainable development of the urban economy, society, and environment. However, the frequent random disturbances in daily operations pose a significant challenge to the stability of rail transit networks and severely interfere with urban operations. [Objective]Researchers must analyze the dynamic response mechanism of rail transit networks during disturbances, quantitatively evaluate the performance of rail transit networks during disturbance events, and identify the key network components. This provides a scientific basis for the resource allocation and emergency management of rail transit networks. [Methods]By integrating complex network theory with the resilience triangle framework, we propose a neural-network-based resilience assessment method that incorporates three dimensions, i.e., network topology,rational passenger travel paths, and origin-destination flow patterns. [Data]Using the Beijing rail transit network as a case study, we investigate resilience variations under random disturbances. [Conclusion]The results show that the proposed model can comprehensively evaluate the performance retention of the rail transit network during disturbances, highlight critical nodes and lines, and overcome the limitations of the conventional static network-analysis method. This approach contributes significantly to ensuring network-safety stability and improving urban-transportation efficiency.

参考文献

[1] COX A, PRAGER F, ROSE A. Transportation security and the role of resilience:a foundation for operational metrics[J]. Transport Policy, 2011, 18(2):307-317.

[2] VON FERBER C, BERCHE B, HOLOVATCH T, et al. A tale of two cities:vulnerabilities of the London and paris transit networks[J]. Journal of Transportation Security,2012, 5(3):199-216.

[3] ADJETEY-BAHUN K, BIRREGAH B, CH?TELET E,et al. A model to quantify the resilience of mass railway transportation systems[J]. Reliability Engineering&System Safety, 2016, 153:1-14.

[4] NOGAL M, O’CONNOR A, CAULFIELD B, et al. Resilience of traffic networks:from perturbation to recovery via a dynamic restricted equilibrium model[J]. Reliability Engineering&System Safety, 2016, 156:84-96.

[5] ZHANG D M, DU F, HUANG H, et al. Resiliency assessment of urban rail transit networks:Shanghai metro as an example[J]. Safety Science, 2018, 106:230-243.

[6] LU Q C. Modeling network resilience of rail transit under operational incidents[J]. Transportation Research Part A:Policy and Practice, 2018, 117:227-237.

[7] CASSOTTANA B, SHEN L, TANG L C. Modeling the recovery process:a key dimension of resilience[J]. Reliability Engineering&System Safety, 2019, 190:106528.

[8] KING D, ABOUDINA A, SHALABY A. Evaluating transit network resilience through graph theory and demandelastic measures:case study of the Toronto transit system[J]. Journal of Transportation Safety&Security, 2020, 12(7):924-944.

[9] BE?INOVI?N. Resilience in railway transport systems:a literature review and research agenda[J]. Transport Reviews, 2020, 40(4):457-478.

[10] SAADAT Y, AYYUB B M, ZHANG Y, et al. Resiliencebased strategies for topology enhancement and recovery of metrorail transit networks[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A:Civil Engineering, 2020, 6(2):04020017.

[11] DIAB E, SHALABY A. Metro transit system resilience:understanding the impacts of outdoor tracks and weather conditions on metro system interruptions[J]. International Journal of Sustainable Transportation, 2020, 14(9):657-670.

[12]李明.城市轨道交通网络弹性评估与优化研究[D].北京:北京交通大学, 2021.LI Ming. Resilience assessment and optimization for urban rail transit network[D]. Beijing:Beijing Jiaotong University, 2021.

[13]程驰尧,牟能冶.基于后向加边算法的城市轨道交通网络弹性优化研究[J].交通运输工程与信息学报,2022, 20(4):88-99.CHENG Chiyao, MU Nengye. Resilience optimization of urbanrail transit network based on posteriorly adding algorithm[J]. Journal of Transportation Engineering and Information, 2022, 20(4):88-99.

[14]潘守政,何佳,王英平,等.环线对地铁网络弹性的影响研究[J].交通运输工程与信息学报, 2022, 20(4):100-110.PAN Shouzheng, HE Jia, WANG Yingping, et al. Influence of circle lines on the resilience of subway networks[J]. Journal of Transportation Engineering and Information, 2022, 20(4):100-110.

[15]白雨浛.韧性视角下城市轨道交通干扰后的恢复策略[D].大连:大连交通大学, 2023.BAI Yuhan.Recovery strategies for urban rail transit after interference from a resilient perspective[D]. Dalian:Dalian Jiaotong University, 2023.

[16]杨振珑,黄文成,法慧妍,等.基于Kolmogorov熵权的城市轨道交通网络节点重要度识别算法[J].交通运输工程与信息学报,2024,22(1):139-149.YANG Zhenlong, HUANG Wencheng, FA Huiyan, et al.Node importance recognition algorithm for urban rail transit networks based on Kolmogorov entropy weight[J]. Journal of Transportation Engineering and Information, 2024, 22(1):139-149.

[17]刘欣亚,屈云超,吴建军.考虑韧性和调度费用的城市路网修复策略[J].交通运输工程与信息学报, 2024, 22(3):1-13.LIU Xinya, QU Yunchao, WU Jianjun. Restoration strategies for urban road network considering resilience and scheduling costs[J]. Journal of Transportation Engineering and Information,2024,22(3):1-13.

[18] BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra,2003, 19(4):733-752.

[19] CHEN T, MA J, ZHU Z, et al. Evaluation method for node importance of urban rail network considering traffic characteristics[J]. Sustainability, 2023, 15(4):3582.

[20]张永生.城市轨道交通乘客半补偿路径选择行为分析理论和方法[D].北京:北京交通大学, 2016.ZHANG Yongsheng. Passenger’s semi-compensatory route choice behavior analysis in urban rail transit network[D]. Beijing:Beijing Jiaotong University, 2016.

[21]朱国,章澜岚,刘家俊,等.基于多源数据的城市轨道交通乘客路径选择估计方法[J].都市快轨交通, 2025,38(1):99-105.ZHU Guo, ZHANG Lanlan, LIU Jiajun, et al. Estimation method of urban rail transit passenger route choices based on multi-source data[J].Urban Rapid Rail Transit,2025, 38(1):99-105.

[22]王峙文.城市轨道交通精细化区间客流密度与运输组织方案适应性研究[D].成都:西南交通大学, 2019.WANG Zhiwen. The adaptability study of refined section density of passenger flow and transport organization in urban rail teansit[D]. Chengdu:Southwest Jiaotong University, 2019.

[23] DELLING D, SANDERS P, SCHULTES D, et al. Engineering route planning algorithms[M]//LERNER J,WAGNER D, ZWEIGK A. Algorithmics of Large and Complex Networks. Berlin Heidelberg:Springer Berlin Heidelberg, 2009:117-139.

[24] CHEN Y, BELL M G H, BOGENBERGER K. Reliable pretrip multipath planning and dynamic adaptation for a centralized road navigation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(1):14-20.

[25]张金雷.城市轨道交通线网短时客流预测方法研究[D].北京:北京交通大学, 2021.ZHANG Jinlei. Study of the short-term passenger flow prediction in urban rail transit networks[D]. Beijing:Beijing Jiaotong University, 2021.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2025.03.018

中图分类号:U29-39

引用信息:

[1]叶森,吕兴,李盛杰等.基于神经网络算法的城市轨道交通网弹性评估[J].交通运输工程与信息学报,2025,23(03):197-212.DOI:10.19961/j.cnki.1672-4747.2025.03.018.

基金信息:

先进轨道交通自主运行全国重点实验室开放课题资助项目(RCS2023K001); 国家级大学生创新创业训练计划项目(202510004167)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文