nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.23 144-155
驾驶员感知反应点对交通流迟滞影响特性及其优化策略
基金项目(Foundation): 国家自然科学基金项目(62303228); 教育部人文社会科学研究项目(23YJC630253); 武汉市交通强国建设试点科技联合项目(2024-2-1)
邮箱(Email):
DOI: 10.19961/j.cnki.1672-4747.2024.12.006
摘要:

【背景】迟滞作为典型的交通流非线性现象,其形成机制与驾驶员生理心理特性密切相关。【目标】通过探究驾驶员感知反应点随机性对交通流迟滞的影响规律,提出减弱迟滞强度的优化策略,从而缓解交通振荡和提升行车安全。【方法】首先,运用Parabola2D函数拟合得到AP发生概率分布函数,将AP分布引入智能驾驶模型(Intelligent Driver Model,IDM)并进行迟滞效应仿真分析;随后,基于所提跟驰模型,在特定速度差条件下及时干预驾驶员感知并提供决策信息,从而实现迟滞效应的改善。【数据】对美国交通部联邦公路管理局采集的NGSIM数据集进行降噪处理并提取AP数据,基于此拟合得到AP发生概率分布函数并用于跟驰模型改进和迟滞效应分析。【结果】所提跟驰模型较基线IDM能更准确地捕捉驾驶员感知决策点变化。通过对迟滞效应的相关性分析发现,AP分布参数c与迟滞强度有显著正相关性,z0、b、d值较小时与迟滞强度为负相关,达到一定阈值后转变为正相关。此外,及时干预驾驶员感知并提供决策信息能够有效减弱迟滞效应,迟滞强度随干预速度差范围的增大而逐渐降低,但是当速度差干预范围达到一定阈值后无法进一步提升改善效果。

Abstract:

[Background] As a typical nonlinear phenomenon in traffic flow, hysteresis formation is closely related to the physiological and psychological characteristics of drivers. [Objective] To investigate the effect of random action points(APs) on traffic hysteresis as well as to propose optimization strategies to reduce the intensity of hysteresis, thereby alleviating traffic oscillation and improving driving safety. [Methods] First, the probability distribution function of the AP is obtained by fitting the Parabola2D function, and the AP distribution is introduced into an intelligent driver model(IDM) to simulate and analyze the hysteresis effect. Subsequently, the proposed model is used to intervene the driver's perception and provide decision-making information under specific speed-difference conditions to improve the hysteresis effect. Thus, the hysteresis effect is improved. [Data] The NGSIM dataset obtained by the Federal Highway Administration of the U.S. Department of Transportation is processed with noise reduction and the AP data are extracted, based on which the probability distribution function of the AP occurrence is fitted to improve the car-following model and analyze the hysteresis effect. [Results] The proposed car-following model can capture changes in driver-perception decision points more accurately than the baseline IDM. The correlation analysis of the hysteresis effect reveals that the AP distribution parameter c has a significant positive correlation with the hysteresis intensity, is negatively correlated with the hysteresis intensity when the values of z0, b, and d are small, and becomes positively correlated after reaching a certain threshold value. Additionally,timely intervention in driver perception and provision of decision-making information can effectively attenuate the hysteresis effect, and the hysteresis intensity gradually decreases with an increase in the intervention speed-difference range; however, further improvements cannot be realized when the speed-difference intervention range reaches a certain threshold.

参考文献

[1] ZHANG H M. A mathematical theory of traffic hysteresis[J]. Transportation Research Part B:Methodological,1999, 33(1):1-23.

[2] GEROLIMINIS N, SUN J. Hysteresis phenomena of a macroscopic fundamental diagram in freeway networks[J]. Transportation Research Part A:Policy and Practice,2011, 45(9):966-979.

[3] GAYAH V V, DAGANZO C F. Clockwise hysteresis loops in the macroscopic fundamental diagram:an effect of network instability[J]. Transportation Research Part B:Methodological, 2011, 45(4):643-655.

[4]贺正冰,关伟,樊玲玲,等.北京市快速环路宏观基本图特征研究[J].交通运输系统工程与信息, 2014, 14(2):199-205.HE Zhengbing, GUAN Wei, FAN Lingling, et al. Characteristics of macroscopic fundamental diagram for Beijing urban ring freeways[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(2):199-205.

[5]王鹏飞,岳昊,关宏志.路网宏观基本图中磁滞现象的产生机理[J].城市交通, 2018, 16(2):89-95, 102.WANG Pengfei, YUE Hao, GUAN Hongzhi. Hysteresis phenomenon in a macroscopic fundamental diagram of roadway network[J]. Urban Transport of China, 2018, 16(2):89-95, 102.

[6] LI L, JIANG R, HE Z, et al. Trajectory data-based traffic flow studies:a revisit[J]. Transportation Research Part C:Emerging Technologies, 2020, 114:225-240.

[7] MATTAS K, ALBANO G, DONàR, et al. On the relationship between traffic hysteresis and string stability of vehicle platoons[J]. Transportation Research Part B:Methodological, 2023, 174:102785.

[8] YEO H, SKABARDONIS A. Understanding stop-and-go traffic in view of asymmetric traffic theory[C]//Proceeding of the 18th International Symposium on Transportation and Traffic Theory. Hong Kong:Springer, 2009:99-115.

[9] DENG H, ZHANG H M. On traffic relaxation, anticipation, and hysteresis[J]. Transportation Research Record:Journal of the Transportation Research Board, 2015, 2491(1):90-97.

[10] CHEN D, LAVAL J A, AHN S, et al. Microscopic traffic hysteresis in traffic oscillations:a behavioral perspective[J]. Transportation Research Part B:Methodological,2012, 46(10):1440-1453.

[11] SAIFUZZAMAN M, ZHENG Z D, HAQUE M M, et al.Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level[J]. Transportation Research Part B:Methodological, 2017, 105:523-538.

[12]王晖.基于驾驶员行为的交通震荡特性研究[D].哈尔滨:哈尔滨工业大学, 2020.WANG Hui. Characteristics of traffic oscillation based on driver behavior[D]. Harbin:Harbin Institute of Technology, 2020.

[13] WAN Q, PENG G, LI Z, et al. Using asymmetric theory to identify heterogeneous drivers’behavior characteristics through traffic oscillation[J]. IEEE Access, 2019, 7:106284-106294.

[14] ZHANG Y, OWEN L E, CLARK J E. Multi-regime approach for microscopic traffic simulation[J]. Transportation Research Record:Journal of the Transportation Research Board, 1998, 1644(1):103-114.

[15] WIEDEMANN R. Simulation des Strassenverkehrsflusses[M]//Schriftenreihe des Instituts für Verkehrswesen der Universit?t Karlsruhe. Germany:Karlsruhe, 1974(8):66-68.

[16] LEUTZBACH W, WIEDEMANN R. Development and applications of traffic simulation models at the Karlsruhe Institut für Verkehrswesen[J]. Traffic Engineering and Control, 1986, 27(5):270-278.

[17] FRITZSCHE H T. A model for traffic simulation[J]. Traffic Engineering and Control, 1994, 35(5):317-321.

[18] WANG W, ZHANG W, LI D, et al. Improved action point model in traffic flow based on driver's cognitive mechanism[C]//IEEE Intelligent Vehicles Symposium.Parma:IEEE, 2004:447-452.

[19] BRACKSTONE M, SULTAN B, MCDONALD M. Motorway driver behaviour:studies on car following[J].Transportation Research Part F:Traffic Psychology and Behaviour, 2002, 5(1):31-46.

[20]刘婧,王扬,刘冬梅,等.基于峰值检测的跟驰瞬时反应时间估计方法[J].交通运输工程与信息学报, 2024, 22(4):85-95.LIU Jing, WANG Yang, LIU Dongmei, et al. Estimation method of car-following instantaneous reaction times based on a peak detection algorithm[J]. Journal of Transportation Engineering and Information, 2024, 22(4):85-95.

[21] TREIBER M, KESTING A. The intelligent driver model with stochasticity-new insights into traffic flow oscillations[J]. Transportation Research Part B:Methodological, 2018, 117:613-623.

[22] BOER E R. Car following from the driver’s perspective[J]. Transportation Research Part F:Traffic Psychology and Behaviour, 1999, 2(4):201-206.

[23] XIE D F, WEN Y Q, ZHAO X M, et al. Cooperative driving strategies of connected vehicles for stabilizing traffic flow[J]. Transportmetrica B:Transport Dynamics,2020, 8(1):166-181.

[24]贺正冰.微观交通模型:智能网联化转型与通用驾驶人模型框架[J].交通运输工程与信息学报, 2022, 20(2):1-13.HE Zhengbing. Microscopic traffic models:transformation in connected environment and generalized driver model[J]. Journal of Transportation Engineering and Information, 2022, 20(2):1-13.

[25] KAMAL M A S, TAGUCHI S, YOSHIMURA T. Efficient driving on multilane roads under a connected vehicle environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9):2541-2551.

[26]肖锦龙.巴特沃斯低通滤波器在图像增强中的应用研究[J].智能计算机与应用, 2021, 11(5):179-182.XIAO Jinlong. Application of butterworth low pass filter in image enhancement[J]. Intelligent Computer and Applications, 2021, 11(5):179-182.

[27] MONTANINO M, PUNZO V. Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns[J]. Transportation Research Part B:Methodological, 2015, 80:82-106.

[28]顾海燕.车联网环境下高速公路车辆跟驰模型及仿真研究[D].南京:东南大学, 2017.GU Haiyan. Research on freeway car-following modeling and simulation in connected vehicle environment[D]. Nanjing:Southeast University, 2017.

[29] BIFULCO G N, PARIOTA L, BRACKSTIONE M, et al.Driving behaviour models enabling the simulation of advanced driving assistance systems:revisiting the action point paradigm[J]. Transportation Research Part C:Emerging Technologies, 2013, 36:352-366.

[30]贺荣伟.基于遗传算法的车辆路径规划算法研究[D].北京:北京交通大学, 2019.HE Rongwei. Research on vehicle path planning algorithm based on GA algorithm[D]. Beijing:Beijing Jiaotong University, 2019

[31] PUNZO V, ZHENG Z, MONTANINO M. About calibration of car-following dynamics of automated and humandriven vehicles:methodology, guidelines and codes[J].Transportation Research Part C:Emerging Technologies, 2021, 128:103165.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2024.12.006

中图分类号:U491

引用信息:

[1]杨海飞,华翊璇,粟海琪等.驾驶员感知反应点对交通流迟滞影响特性及其优化策略[J].交通运输工程与信息学报,2025,23(03):144-155.DOI:10.19961/j.cnki.1672-4747.2024.12.006.

基金信息:

国家自然科学基金项目(62303228); 教育部人文社会科学研究项目(23YJC630253); 武汉市交通强国建设试点科技联合项目(2024-2-1)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文