723 | 0 | 215 |
下载次数 | 被引频次 | 阅读次数 |
模块车能通过中途分离与合并来调整车队容量、实现无缝换乘,兼具规模化与“门到门”灵活性优势,但其轻量化的电池设计也在一定程度上限制了车辆续航能力。为了探索模块车在需求响应公交中的应用,并解决车辆中途充电问题,本文建立了模块化需求响应公交路径规划模型,优化车辆路径计划、车队编组策略、车内换乘策略以及换电和机会充电计划。针对模型特征设计了改进的自适应大邻域搜索算法,根据各车辆路径之间需要进行编组和协同交互的特点,定制化设计了车队类修复算子和能源类修复算子等。使用安徽宣城的出行数据进行实验,结果显示:与传统公交相比,模块化需求响应公交系统使乘客总出行用时降低48.81%;与车辆单独运行的方案相比,车队编组方案能够使系统总成本平均降低13.24%;相比仅充电策略,充换电结合策略能在少量增加备用电池固定成本的情况下,使能源成本减少21.09%;此外,企业可以通过调整等待时间惩罚系数来平衡企业经营成本与乘客时间成本,达到动态最优。
Abstract:Modular vehicles can adjust their fleet capacity and achieve seamless transfers through mid-journey separation and merging by combining the advantages of scalability and“door-to-door”flexibility. However, their lightweight battery design limits their cruising range to a certain extent. To investigate the application of modular vehicles in demand-responsive transit and address the issue of mid-journey recharging, this study establishes a modular demand-responsive transit path planning model. It optimizes the vehicle-route planning, fleet-formation strategies, in-vehicle transfer strategies, battery swapping, and charging plans. An improved adaptive large neighborhood search algorithm is designed for the model characteristics, while fleet-type and energy-type repair operators are custom designed based on the requirement for coordination and interaction between vehicle routes.Experiments using travel data from Xuancheng, Anhui show that compared with the typical transit,the modular demand-responsive transit system reduces the total passenger travel time by 48.81%.Compared with the scenario where vehicles operate individually, the fleet formation of the proposed system can reduce the total cost by an average of 13.24%, whereas the combined charging and swapping strategy can reduce energy costs by 21.09% with a slight increase in the fixed cost of spare batteries. Companies can balance between business operating and passenger time costs by adjusting the waiting-time penalty coefficient, thus achieving dynamic optimization.
[1]交通运输部,国家发展和改革委员会,公安部,等.关于推进城市公共交通健康可持续发展的若干意见[EB/OL].(2023-10-09)[2024-02-20]. https://xxgk.mot.gov.cn/2020/jigou/ysfws/202310/t20231009_3925459.html.
[2] LAMBERT F. A new trackless electric train(aka a bus)starts testing in China[EB/OL].(2017-10-30)[2022-04-15]. https://electrek.co/2017/10/30/trackless-electric-trainchina/.
[3]刘小寒,马晓磊,刘钲可.面向公共交通的电动自动驾驶模块车调度优化[J].中国公路学报, 2022, 35(3):240-248.LIU Xiaohan, MA Xiaolei, LIU Zhengke. Dispatch optimization of electric autonomous modular vehicles for public transport[J]. China Journal of Highway and Transport, 2022, 35(3):240-248.
[4]范文博,陈香,刘涛.模块化自动驾驶穿梭公交服务频率优化及时刻表设计[J].交通运输工程与信息学报,2023, 21(2):160-176.FAN Wenbo, CHEN Xiang, LIU Tao. Modular autonomous shuttle transit service:frequency setting and timetabling[J]. Journal of Transportation Engineering and Information, 2023, 21(2):160-176.
[5] NEXT, Specifications[EB/OL].(2021-1-19)[2023-12-15].https://www.next-future-mobility.com/specs.
[6] CAROS N S, CHOW J Y J. Day-to-day market evaluation of modular autonomous vehicle fleet operations with enroute transfers[J]. Transportmetrica B:Transport Dynamics, 2021, 9(1):109-133.
[7] LIU X, QU X, MA X. Improving flex-route transit services with modular autonomous vehicles[J]. Transportation Research Part E:Logistics and Transportation Review,2021, 149:102331.
[8] BRACH J. Modern equipment transport solutions for streamlining deliveries within the framework of“the last milelogistics”[J]. Transport Economics and Logistics,2018, 80:35-48.
[9]龙雲,周剑峰,方侃,等.旅行时间不确定的灵活线路公交调度优化[J].交通运输工程与信息学报,2024,22(2):48-62.LONG Yun, ZHOU Jianfeng, FANG Kan, et al. Robust optimization model for flexible-route bus optimization considering travel time uncertainty[J]. Journal of Transportation Engineering and Information.2024,22(2):48-62.
[10]任婧璇,常孝亭,巫威眺,等.考虑候选站点和全服务过程的需求响应接驳公交调度[J].交通运输系统工程与信息, 2023, 23(5):202-214.REN Jingxuan, CHANG Xiaoting, WU Weitiao, et al.Demand responsive feeder transit scheduling considering candidate stops and full-service process[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(5):202-214.
[11]巫威眺,周霄,朱彦辰,等.考虑乘客时空灵活性的需求响应客货联运动态调度[J].交通运输系统工程与信息, 2023, 23(4):211-227.WU Weitiao, ZHOU Xiao, ZHU Yanchen, et al. Demand-responsive dynamic scheduling considering passengers spatio temporal flexibility for passenger and freight transportation[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4):211-227.
[12] PEI M, LIN P, DU J, et al. Vehicle dispatching in modular transit networks:a mixed-integer nonlinear programming model[J]. Transportation Research Part E:Logistics and Transportation Review, 2021, 147:102240.
[13] ZHANG Z, TAFRESHIAN A, MASOUD N. Modular transit:Using autonomy and modularity to improve performance in public transportation[J]. Transportation Research Part E:Logistics and Transportation Review,2020, 141:102033.
[14] VERMA A. Electric vehicle routing problem with time windows, recharging stations and battery swapping stations[J]. EURO Journal on Transportation and Logistics,2018, 7(4):415-451.
[15] FROGER A, MENDOZA J E, JABALI O, et al. Improved formulations and algorithmic components for the electric vehicle routing problem with nonlinear charging functions[J]. Computers&Operations Research, 2019,104:256-294.
[16]熊杰,甘凯伦,李同飞,等.电动公交车队规模与充电桩配置协同优化[J].交通运输工程与信息学报, 2024,22(1):95-110.XIONG Jie, GAN Kailun, LI Tongfei, et al. Collaborative optimization of electric bus fleet size and charger deployment[J]. Journal of Transportation Engineering and Information, 2024, 22(1):95-110.
[17]巫威眺,林越,李余,等.随机行程时间的电动公交调度模型[J].中国公路学报, 2023, 36(6):235-253.WU Weitiao, LIN Yue, LI Yu, et al. Electric bus scheduling model with stochastic travel time[J]. China Journal of Highway and Transport, 2023, 36(6):235-253.
[18] REZGUI D, CHAOUACHI SIALA J, AGGOUNEMTALAA W, et al. Application of a variable neighborhood search algorithm to a fleet size and mix vehicle routing problem with electric modular vehicles[J]. Computers&Industrial Engineering, 2019, 130:537-550.
[19] LI G, CHEN Y, WANG Y, et al. City-scale synthetic individual-level vehicle trip data[J]. Scientific Data, 2023,10(1):96.
[20] HOLMBERG K, TUY H. A production-transportation problem with stochastic demand and concave production costs[J]. Mathematical Programming, 1999, 85(1):157-179.
基本信息:
DOI:10.19961/j.cnki.1672-4747.2024.03.020
中图分类号:U491.17
引用信息:
[1]郭梅雪,靳文舟,巫威眺.考虑充换电的模块化需求响应公交路径优化[J].交通运输工程与信息学报,2024,22(03):34-51.DOI:10.19961/j.cnki.1672-4747.2024.03.020.
基金信息:
国家自然科学基金项目(52072128,72071079)