nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2016, 01, v.14;No.51 87-94
基于信息熵与遗传算法的公共交通线路选择模型
基金项目(Foundation): 国家自然科学基金资助项目(51178157);; 教育部人文社会科学研究项目(NO.12YJCH071);; 国家统计科研计划项目(NO.2012LY150);; 江苏省高校“青蓝工程”资助项目(NO.201211)
邮箱(Email):
DOI:
摘要:

针对公共交通线路选择问题,旨在分析起讫点间公共交通运行的时间和线路类型等级对居民公共交通线路选择行为的影响,在此基础上根据路权等级划分城市公共交通方式的类型并运用遗传算法仿真求出最短路径。利用信息熵理论和多属性综合决策方法对无偏好下居民选择公共交通线路的不确定性问题进行解析,搭建路径综合属性值的计算模型,获得每条路径的综合属性值,并基于最大值原理获得最优出行路径。最后,将模型运用于郑州市金水区某个公共交通网络出行实例中。结果表明:在无偏好下,线路5的综合属性值为0.999,而按照直观的最短路线路1的综合属性值仅为0.884,可见,线路类型等级对公共交通线路选择具有显著的影响。

Abstract:

Aimming at route choice of public transit, the impact of public transit operation time and travel mode between the origin-destination pair on the resident's choice behavior was analyzed. Dividing the urban transit types according to the right of way level and using the genetic algorithm, the shortest path was simulated. Taking the advantage of the information entropy theory and the multi-property integrated decision method for residents to choice the public transit routes without preference, the problem's uncertainty was resolved. A calculative model of path comprehensive property value was established, and the comprehensive property values were obtained for each path; then, the best travel route was get based on the maximum principle. Finally, the model was applied to a public traffic travel network of Jinshui district of Zhengzhou City. The results showed that: in the absence of preference, the comprehensive property value of line 5 was 0.999, but in accordance with visualization, the comprehensive property value was only 0.884.So, we get that line type level has a significant effect on the public transit line selection.

参考文献

[1]郭洪洋,张玺,刘澜,等.信息影响下区分潜在类别的公交线路选择模型[J].计算机应用研究,2014,31(10):37-40.

[2]李玲,李军.综合成本下城市公交出行方式与线路选择[J].武汉理工大学学报,2011(06):68-71.

[3]William H.K.Lam,Hai-Jun Huang.Combined activity/travel choice models:time-dependent and dynamic versions[J].Networks and Spatial Economics,2003,3(3):.323-347.

[4]Mitsuhisa Tanaka,Nobuhiro Uno,Yasuhiro Shiomi,Yoongho Ahn.Experimental study of effects of travel time distribution information on dynamic route choice behavior[J].Journal of Intelligent Transportation Systems,2014,18(2):215-226.

[5]蔡志理,邴其春.同线路BRT与常规公交速度特性对比分析[J].武汉理工大学学报(交通科学与工程版),2012,36(5):916-921.

[6]钱萌,彭张节,程树林等.基于综合评价指数的城市公交线路选择优化模型[J].吉林大学学报(信息科学版),2008,26(2):180-185.

[7]李睿,余剑峰,林亚平,等.基于公交网和道路交通网的出行线路选择算法研究[J].湖南大学学报(自然科学版),2008,35(10):80-84.

[8]胡启洲,孙煦.基于多维联系数的城市路网交通拥堵监控模型[J].中国公路学报,2013,26(6):143-149.

[9]Zheng Li,David A.Hensher.Behavioural implications of preferences,risk attitudes and beliefs in modelling risky travel choice with travel time variability[J].Transportation,2013,40(3):.505-523.

[10]Caspar G.Chorus,Michel Bierlaire.An empirical comparison of travel choice models that capture preferences for compromise alternatives[J].Transportation,2013,40(3):.549-562.

[11]Gang LI,Akimasa FUJIWARA,Junyi ZHANG.Effects of Item nonresponses on the performance of travel mode choice models for developing cities:a comparative analysis[J].Journal of Transportation Systems Engineering and Information Technology,2011,11(4):.61-76.

[12]Fumitaka Kurauchi,Jan-Dirk Schm?cker,Hiroshi Shimamoto,Seham M.Hassan.Variability of commuters’bus line choice:an analysis of oyster card data[J].Public Transport,2014,6(1-2):21-34.

[13]金凡.路权与公交路权优先[J].建设科技,2007(09):29-29.

[14]康晓军,王茂才.基于遗传算法的最短路径问题求解[J].计算机工程与应用,2008,44(23):22-23.

[15]陈京荣,徐瑞华.有偏好的交通网络路径选择模型[J].交通运输工程学报,2012,12(2):100-104.

基本信息:

DOI:

中图分类号:U491.17

引用信息:

[1]刘倩茜,高宁波,郑丽媛等.基于信息熵与遗传算法的公共交通线路选择模型[J],2016,14(01):87-94.

基金信息:

国家自然科学基金资助项目(51178157);; 教育部人文社会科学研究项目(NO.12YJCH071);; 国家统计科研计划项目(NO.2012LY150);; 江苏省高校“青蓝工程”资助项目(NO.201211)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文