nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 01 v.23 189-211
基于系统动力学和多智能体模型的高速公路减碳策略研究
基金项目(Foundation): 浙江省尖兵“领雁”研发攻关计划项目(2023C03G6251403); 国家重点研发计划项目(2019YFB1600303)
邮箱(Email): meizhenyu@zju.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2024.09.012
中文作者单位:

浙江交工集团股份有限公司;浙江大学,工程师学院;浙江大学,建筑工程学院;

摘要(Abstract):

【背景】交通运输是温室气体排放的重要来源,随着高速公路网络的持续扩展,针对高速公路碳排放的研究越来越重要。【目标】综合考虑宏观社会经济发展、能源结构、交通组成、政策类型以及微观交通流特性对于道路碳排放的影响,以此探讨高速公路实现碳达峰的有效路径。【方法】首先,将高速公路碳排放系统分为社会经济-人口、乘用车、货运物流车、道路运行、能耗及碳排放五个子系统,随后,利用Vensim仿真平台建立了系统动力学系统的存量流量图和系统动力学方程,利用Matlab程序刻画了道路运行多智能体系统,并构建了三维情景组合模型,融合了27种不同策略类型和策略强度组合。【数据】利用浙江省高速公路的收费站数据和调查数据,对杭州绕城高速公路进行分析。【结果】提出了货运需求优化、新能源汽车推广、能耗技术发展三种减碳策略,预测了不同组合策略下高速公路的碳排放趋势,揭示了不同强度的策略组合实现碳达峰的潜在效力。

关键词(KeyWords): 公路运输;交通碳排放;系统动力学;智能体仿真;高速公路
参考文献

[1]陆化普,冯海霞.交通领域实现碳中和的分析与思考[J].可持续发展经济导刊, 2022(Z1):63-67.LU Huapu, FENG Haixia. Analysis and thinking on carbon neutrality in transportation field[J]. China Sustainability Tribune, 2022(Z1):63-67.

[2]卢奇秀.中国电动汽车百人会副秘书长王贺武:汽车道路交通可望在2025年碳达峰[N].中国能源报, 2022-03-07(18).

[3] PANG J, AN L, SHEN S. Gasoline prices, traffic congestion, and carbon emissions[J]. Resource and Energy Economics, 2023, 75:101407.

[4]单肖年,叶建红,陈小鸿.城市交通拥堵缓解对车辆减排的效益研究[J].交通运输系统工程与信息, 2016, 16(2):37-43.SHAN Xiaonian, YE Jianhong, CHEN Xiaohong. Evaluating the benefits of traffic congestion mitigation on vehicles emissions reduction[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2):37-43.

[5]孙启鹏,高怡,马飞,等.基于LEAP和综合集成赋权的城市低碳交通政策选择方法[J].中国公路学报, 2014,27(8):105-111, 119.SUN Qipeng, GAO Yi, MA Fei, et al. LEAP system and integrated weight based policy choice method for urban low-carbon transportation[J]. China Journal of Highway and Transport, 2014, 27(8):105-111, 119.

[6]焦萍,马宁远,赵剑楠,等.基于多燃料类型出租车轨迹匹配的居民出行CO2排放时空特征挖掘[J].黑龙江交通科技, 2024, 47(7):147-155.JIAO Ping, MA Ningyuan, ZHAO Jiannan, et al. Spatiotemporal characteristics mining of CO2emissions from residential trips based on trajectory matching of multi-fuel taxis[J]. Communications Science and Technology Heilongjiang, 2024, 47(7):147-155.

[7]陈良奇,王江峰,娄聚伟,等.我国高速公路零碳服务区现状与发展综述[J].建筑节能(中英文), 2024, 52(10):80-87, 141.CHEN Liangqi, WANG Jiangfeng, LOU Juwei, et al. Review on the status and development of zero carbon service area on expressway in China[J]. Building Energy Efficiency, 2024, 52(10):80-87, 141.

[8]孔维麟.考虑碳排放的高速公路货车差异化收费研究[D].济南:山东建筑大学,2024.

[9]刘美银,孙茂棚.我国城市轨道交通票价调整策略研究:基于系统动力学方法的仿真分析[J].价格理论与实践, 2017(4):128-131.LIU Meiyin, SUN Maopeng. Rail transport pricing strategy based on the system dynamics model[J]. Price(Theory&Practice), 2017(4):128-131.

[10] HANG W, LI X. Application of system dynamics for evaluating truck weight regulations[J]. Transport Policy,2010, 17(4):240-250

[11]周银香.基于系统动力学视角的城市交通能源消耗及碳排放研究——以杭州市为例[J].城市发展研究,2012(9):99-105.ZHOU Yinxiang. The studies on urban transportation energy consumption and carbon emissions based on the view of system dynamics:take Hangzhou as the example[J]. Urban Development Studies, 2012, 19(9):99-105.

[12]李青桐,时柏营,孔祥科,等.基于多智能体仿真的多方式通勤出行行为研究[J].山东建筑大学学报, 2022,37(4):93-100.LI Qingtong, SHI Baiying, KONG Xiangke, et al. Research on multi-mode commuting behavior based on multi-agent simulation[J]. Journal of Shandong Jianzhu University, 2022, 37(4):93-100.

[13] KOLOMATSKIY A, BARANOV D, KORCHAGIN V,et al. Assessing the effect of different parking pricing policies on DRT demand using multiagent traffic simulation, case study of St. Petersburg[J]. Procedia Computer Science, 2020, 170:799-806.

[14] WANG H, SHI W, XUE H, et al. Performance evaluation of fee-charging policies to reduce the carbon emissions of urban transportation in China[J]. Atmosphere,2022, 13(12):2095.

[15]徐甜友.北京市交通政策影响的系统动力学研究[D].北京:北京交通大学, 2014.XU Tianyou. Study on influence of Beijing traffic polices based on system dynamics[D]. Beijing:Beijing Jiaotong University, 2014.

[16]李志鹏.基于系统动力学的天津市城市交通能源消耗与碳排放预测[J].价值工程, 2012, 31(7):308-310.LI Zhipeng. The forecast of the energy consumption and carbon emission based on system dynamics[J]. Value Engineering, 2012, 31(7):308-310.

[17]黄志辉,纪亮,尹洁,等.中国道路交通二氧化碳排放达峰路径研究[J].环境科学研究, 2022, 35(2):385-393.HUANG Zhihui, JI Liang, YIN Jie, et al. Peak pathway of China’s Road traffic carbon emissions[J]. Research of Environmental Sciences, 2022, 35(2):385-393.

[18]胡晓伟,包家烁,安实,等.碳达峰下城市交通运输减排治理策略研究[J].交通运输系统工程与信息, 2021,21(6):244-256.HU Xiaowei, BAO Jiashuo, AN Shi, et al. Urban transportation emission reduction governance strategies under peak carbon dioxide emissions[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6):244-256.

[19]杨阳,贺德方,佟贺丰,等.用于政策情景模拟的城市交通系统动力学模型构建:以北京市为例[J].中国科技论坛, 2013(11):28-34.YANG Yang, HE Defang, TONG Hefeng, et al. A system dynamic model of urban transportation for policy simulation:a case study of Beijing[J]. Forum on Science and Technology in China, 2013(11):28-34.

[20]张建慧,雷星晖,李金良.基于系统动力学城市低碳交通发展模式研究——以郑州市为例[J].软科学, 2012,26(4):77-81.ZHANG Jianhui, LEI Xinghui, LI Jinliang. Research on building urban low-carbon transportation system based on system dynamics—taking Zhengzhou as an example[J]. Soft Science, 2012, 26(4):77-81.

[21]彭频,何熙途.政府补贴与新能源汽车产业发展——基于系统动力学的演化博弈分析[J].运筹与管理,2021, 30(10):31-38.PENG Pin, HE Xitu. Government subsidies and development of new energy vehicle industry—evolutionary game analysis based on system dynamics[J]. Operations Research and Management Science, 2021, 30(10):31-38.

[22]付跃强,夏天添.基于系统动力学的电动汽车产业发展建模与仿真[J].系统仿真学报, 2021, 33(4):973-981.FU Yueqiang, XIA Tiantian. Modeling and simulation of electric vehicle industry development based on system dynamics[J]. Journal of System Simulation, 2021, 33(4):973-981.

[23]周昊,刘俊勇,刘友波,等.基于系统动力学的电动汽车规模推演分析与仿真[J].电力系统及其自动化学报, 2017, 29(8):1-7.ZHOU Hao, LIU Junyong, LIU Youbo, et al. Analysis and simulation of electric vehicles scale evolution based on system dynamics[J]. Proceedings of the CSU-EPSA,2017, 29(8):1-7.

[24]侯兵,俞宁,周康渠.纯电动汽车发展规模的系统动力学分析与仿真[J].重庆理工大学学报(自然科学),2014, 28(12):23-29, 40.HOU Bing, YU Ning, ZHOU Kangqu. System dynamic analysis and simulation of pure electric vehicle development scale[J]. Journal of Chongqing University of Technology(Natural Science), 2014, 28(12):23-29, 40.

[25]曾鸣,李娜,王涛,等.基于系统动力学的电动汽车与燃油汽车预测仿真[J].现代电力, 2012, 29(6):56-60.ZENG Ming, LI Na, WANG Tao, et al. The prediction and simulation of electric vehicles and Fule vehicles based on system dynamics[J]. Modern Electric Power,2012, 29(6):56-60.

[26]杨小佳.基于系统动力学的新能源汽车推广使用对城市货运的影响[J].物流工程与管理, 2021, 43(5):69-73.YANG Xiaojia. The influence of promotion of new energy vehicles on urban freight transportation based on system dynamics[J]. Logistics Engineering and Management, 2021, 43(5):69-73.

[27]张维.基于系统动力学的新能源物流车市场推广研究——以北京市为例[D].北京:北京交通大学, 2020.ZHANG Wei. Research on market promotion of new energy logistics vehicle based on system dynamics:taking Beijing as an example[D]. Beijing:Beijing Jiaotong University, 2020.

[28]柴瑞松,刘翀,吕一凝.新能源货车全生命周期总成本的优势分析[J].中国储运, 2022(12):112-113.

[29]李强.废旧汽车逆向物流运作模式的选择与网络构建研究[D].无锡:江南大学, 2016.LI Qiang. Research on reverse logistics operation mode selection and network construction of waste automobile[D]. Wuxi:Jiangnan University, 2016.

[30]唐伟,何平,杨强,等.基于IVE模型和大数据分析的杭州市道路移动源主要温室气体排放清单研究[J].环境科学学报, 2018, 38(4):1368-1376.TANG Wei, HE Ping, YANG Qiang, et al. Study on greenhouse gas emission inventory of road source in Hangzhou based on IVE model and large data analysis[J]. Acta Scientiae Circumstantiae, 2018, 38(4):1368-1376.

[31]程江洲,余子容,程杉,等.城市路网中考虑多方影响的电动汽车能耗预测[J].电测与仪表, 2020, 57(20):90-97.CHENG Jiangzhou, YU Zirong, CHENG Shan, et al.Energy consumption prediction of electric vehicle considering multiple influences in urban road network[J].Electrical Measurement&Instrumentation, 2020, 57(20):90-97.

[32]彭勃.高速公路汽车油耗模型研究[D].哈尔滨:哈尔滨工业大学, 2014.PENG Bo. Research about the model of vehicle fuel consumption on the highway[D]. Harbin:Harbin Institute of Technology, 2014.

[33]朱妍.电动化助力货运行业深度降碳[N].中国能源报,2022-05-16(011).

[34]任英伟.高速公路可变收费对货车出行选择影响研究[D].南京:东南大学, 2006.REN Yingwei. The impacts of variable pricing on traveler behavior of cargo trucks[D]. Nanjing:Southeast University, 2006.

[35]喻翔,梁艳洁,魏强.成绵乐经济走廊高速公路货车分时段差异化收费影响分析[C]//中国科学技术协会,中华人民共和国交通运输部,中国工程院.2019世界交通运输大会论文集(上).北京:四川省公路规划勘察设计研究院有限公司,2019:1015-1022.YU Xiang, LIANG Yanjie, WEI Qiang. Impact analysis of differential expressway toll scheme for freight vehicles in different time of Mianyang-Chengdu-Leshan economic corridor.[C]//China Association for Science and Technology, Ministry of Transport of the People's Republic of China, Chinese Academy of Engineering. Proceedings of the 2019 World Transport Congress(Part 1).Beijing:Sichuan Highway Planning, Survey and Design Institute Co., LTD., 2019:1015-1022.

[36]李欢.《推进多式联运发展优化调整运输结构工作方案(2021—202年)》印发[N].人民铁道, 2022-01-17(001).

[37] KAACK L H, VAISHNAV P, MORGAN G M, et al. Decarbonizing intraregional freight systems with a focus on modal shift[J]. Environmental Research Letters,2018, 13(8):083001.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2024.09.012

中图分类号:X734

引用信息:

[1]岑君,陶秋钢,梅振宇等.基于系统动力学和多智能体模型的高速公路减碳策略研究[J].交通运输工程与信息学报,2025,23(01):189-211.DOI:10.19961/j.cnki.1672-4747.2024.09.012.

基金信息:

浙江省尖兵“领雁”研发攻关计划项目(2023C03G6251403); 国家重点研发计划项目(2019YFB1600303)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文