| 195 | 2 | 312 |
| 下载次数 | 被引频次 | 阅读次数 |
反应时间是车辆跟驰模型的关键参数之一,为解决现有基于车辆轨迹的反应时间提取方法无法有效处理随机性等问题,提出了一种基于峰值检测的瞬时反应时间估计新方法。首先,基于刺激-反应理论利用峰值检测算法捕捉轨迹数据中相对速度和加速度的局部峰值,然后结合最小费用时间函数匹配刺激-反应关系进而估计瞬时反应时间。应用高精度轨迹数据集Zen Traffic Data验证方法的有效性和可靠性,并分别从单个车辆和总体的层面进一步挖掘驾驶员的时变反应特性。实验结果显示,新方法与现有方法估计结果的均值差异不超过0.1 s,且与实际分布一致。对交通状态分析发现,反应时间在畅通条件下集中分布在0.4~1.0 s,在拥堵条件下集中分布在0.5~1.5 s;对车辆行驶状态分析发现,反应时间在匀速驾驶状态下较稳定,均值为0.94 s。研究表明,基于峰值检测的新方法不仅能够准确估计反应时间,而且能够揭示反应时间在不同交通拥堵条件和行驶状态下的显著差异,为车辆行驶安全研究提供有效工具。
Abstract:Reaction time is one of the key parameters in car-following models. To address the inability of current trajectory-based reaction-time extraction methods to effectively handle randomness, a new method for instantaneous reaction-time estimation based on peak detection is proposed. First,based on the stimulus-response theory, the peak detection algorithm is used to capture the local peaks of relative speed and acceleration in the trajectory data. Then, the minimal cost time function is added to match the stimulus-response relationship, whereby the instantaneous reaction time can be estimated. The effectiveness and reliability of the method are validated using the high-precision trajectory dataset, Zen Traffic Data. The time-varying characteristics of the reaction time are further explored at the level of individual vehicles and the whole population, respectively. The experimental results show that the mean difference between the estimated results and those obtained by existing methods does not exceed 0.1 s, with both distributions being identical to actual results. The analysis of the traffic state reveals that the reaction times are concentrated in the ranges of 0.4~1.0 s under smooth condition and 0.5~1.5 s under congestion condition. While the analysis of the vehicle driving state reveals that the reaction time is relatively stable under a uniform driving state, with the average value of 0.94 s. The study demonstrates that the method not only accurately estimates the reaction time but also reveals significant differences in the reaction times under various congestion conditions and driving states, providing an effective tool for driving safety research.
[1] LEE G. A generalization of linear car-following theory[J].Operations Research, 1966, 14(4):595-606.
[2] LI S, YANG L, GAO Z, et al. Stabilization strategies of a general nonlinear car-following model with varying reaction-time delay of the drivers[J]. ISA Transactions, 2014,53(6):1739-1745.
[3]申勇,马天奕,李祥尘.考虑速度对反应强度影响的车辆跟驰模型[J].交通运输工程与信息学报, 2019, 17(2):153-159.SHEN Yong, MA Tianyi, LI Xiangchen. Improved car-following model considering the influence of velocity on driver response[J]. Journal of Transportation Engineering and Information, 2019, 17(2):153-159.
[4]?ULíK K, KALA?OVáA,?TEFANCOVáV. Evaluation of driver’s reaction time measured in driving simulator[J]. Sensors, 2022, 22(9):3542.
[5] PAWAR N M, VELAGA N R. Modelling the influence of time pressure on reaction time of drivers[J]. Transportation Research Part F:Traffic Psychology and Behaviour,2020, 72:1-22.
[6]刘怿轩,张慧永,王猛,等.跟驰自动驾驶车时人驾车行为研究:实证与建模[J].交通运输工程与信息学报,2023, 21(2):14-28.LIU Yixuan, ZHANG Huiyong, WANG Meng, et al. Analyzing human driving behavior when following autonomous vehicles:real vehicle testing and modeling[J]. Journal of Transportation Engineering and Information, 2023,21(2):14-28.
[7] TIAN J, ZHU C, CHEN D, et al. Car following behavioral stochasticity analysis and modeling:perspective from wave travel time[J]. Transportation Research Part B:Methodological, 2021, 143:160-176.
[8]柴琳果,蔡伯根,王化深,等.车联网中驾驶员反应时间实时估计方法[J].交通运输系统工程与信息, 2016, 16(5):71-78.CHAI Linguo, CAI Baigen, WANG Huashen, et al. Realtime estimating method of diver’s reacting time under the condition of Internet of vehicles[J]. Journal of Transportation Systems Engineering and Information Technology,2016, 16(5):71-78.
[9]李林波,李瑞杰,邹亚杰.考虑驾驶员模糊感知的深度学习跟驰模型[J].同济大学学报(自然科学版), 2021, 49(3):360-369.LI Linbo, LI Ruijie, ZOU Yajie. Modeling of car-following behaviors considering driver’s fuzzy perception using deep learning[J]. Journal of Tongji University(Natural Science), 2021, 49(3):360-369.
[10] GAZIS D C, HERMAN R, ROTHERY R W. Nonlinear follow-the-leader models of traffic flow[J]. Operations Research, 1961, 9(4):545-567.
[11] OZAKI H. Reaction and anticipation in the car following behavior[J]. Transportation and traffic theory, 1993,12:349-366.
[12] R ANJITKAR P, NAKATSUJI T. Investigating drivers'response under car-following situations[J]. Journal of the Eastern Asia Society for Transportation Studies,2011, 9:1614-1627.
[13] SHARMA A, ZHENG Z, KIM J, et al. Estimating and comparing response times in traditional and connected environments[J]. Transportation Research Record:Journal of the Transportation Research Board, 2019, 2673(4):674-684.
[14] KHODAYARI A, GHAFFARI A, KAZEMI R, et al. A modified car-following model based on a neural network model of the human driver effects[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2012, 42(6):1440-1449.
[15] TAYLOR J, ZHOU X, ROUPHAIL N M, et al. Method for investigating intradriver heterogeneity using vehicle trajectory data:a dynamic time warping approach[J].Transportation Research Part B:Methodological, 2015,73:59-80.
[16]贺正冰.微观交通模型:智能网联化转型与通用驾驶人模型框架[J].交通运输工程与信息学报, 2022, 20(2):1-13.HE Zhengbing. Microscopic traffic models:transformation in connected environment and generalized driver model[J]. Journal of Transportation Engineering and Information, 2022, 20(2):1-13.
[17] ZHENG S T, JIANG R, JIA B, et al. A parsimonious enhanced Newell’s model for accurate reproduction of driver and traffic dynamics[J]. Transportation Research Part C:Emerging Technologies, 2023, 154:104276.
[18] TIAN J, ZHANG H M, TREIBER M, et al. On the role of speed adaptation and spacing indifference in traffic instability:evidence from car-following experiments and its stochastic model[J]. Transportation Research Part B:Methodological, 2019, 129:334-350.
[19] MA L, QU S. A sequence to sequence learning based carfollowing model for multi-step predictions considering reaction delay[J]. Transportation Research Part C:Emerging Technologies, 2020, 120:102785.
[20]沈悦,陈璟,周子涵,等.车联网环境下自动驾驶车辆动态障碍物协作避让模型[J].交通运输工程与信息学报, 2021, 19(4):13-23.SHEN Yue, CHEN Jing, ZHOU Zihan, et al. Model for cooperative dynamic obstacle avoidance of automated vehicle swarms in connected vehicles environments[J].Journal of Transportation Engineering and Information,2021, 19(4):13-23.
[21]郑元,张羽,何蜀燕,等.多源时变延误下考虑信息同步的智能网联车队控制策略[J].交通运输工程与信息学报, 2022, 20(2):25-41.ZHENG Yuan, ZHANG Yu, HE Shuyan, et al. Control strategy for connected and automated vehicle platoon considering information synchronization under time-varying delays of multiple sources[J]. Journal of Transportation Engineering and Information, 2022, 20(2):25-41.
[22] WANG H, WANG W, CHEN J, et al. Using trajectory data to analyze intradriver heterogeneity in car-following[J]. Transportation Research Record:Journal of the Transportation Research Board, 2010, 2188(1):85-95.
[23] PRZYBYLA J, TAYLOR J, JUPE J, et al. Estimating risk effects of driving distraction:a dynamic errorable car-following model[J]. Transportation Research Part C:Emerging Technologies, 2015, 50:117-129.
[24] KRUCZYK M, UMER H M, ENROTH S, et al. Peak Finder Metaserver-a novel application for finding peaks in ChIP-seq data[J]. BMC Bioinformatics, 2013,14:280.
[25] Hanshin Expressway Co., Ltd.. Zen Traffic Data[EB/OL].(2018-6-12)[2022-09-12]. https://zen-traffic-data.net/english/.
[26] CHEN X, ZHU M, CHEN K, et al. FollowNet:a comprehensive benchmark for car-following behavior modeling[J]. Scientific Data, 2023, 10:828.
[27] SEO T, TAGO Y, SHINKAI N, et al. Evaluation of largescale complete vehicle trajectories dataset on two kilometers highway segment for one hour duration:Zen Traffic Data[EB/OL].(2020-02-27)[2022-09-20]. https://api.semanticschdar. org/Corpus ID:220917310.
[28] RANJITKAR P, NAKATSUJI T, AZUTA Y, et al. Stability analysis based on instantaneous driving behavior using car-following data[J]. Transportation Research Record:Journal of the Transportation Research Board,2003, 1852(1):140-151.
[29]中华人民共和国公安部.道路交通拥堵度评价方法[S].北京:中国标准出版社, 2020.
[30]国家市场监督管理总局,中国国家标准化管理委员会.中国汽车行驶工况第1部分:轻型汽车[S].北京:中国标准出版社, 2019.
基本信息:
DOI:10.19961/j.cnki.1672-4747.2024.08.019
中图分类号:U495
引用信息:
[1]刘婧,王扬,刘冬梅,等.基于峰值检测的跟驰瞬时反应时间估计方法[J].交通运输工程与信息学报,2024,22(04):85-95.DOI:10.19961/j.cnki.1672-4747.2024.08.019.
基金信息:
国家自然科学基金项目(10038001201901)