nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 04, v.22;No.86 128-141+153
再探交通网络超额需求容量模型与算法
基金项目(Foundation): 国家自然科学基金项目(72371205)
邮箱(Email): jun.xie@swjtu.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2024.02.015
摘要:

城市路网容量是指在路段容量限制下路网能够容纳的最大交通流量,是衡量城市供需平衡与指导政府投资方向的关键指标和重要依据。网络容量研究可以预测道路网络能够容纳多少额外需求,从而帮助管理者制定出切实有效的交通规划与管理政策。此类问题在数学上通常用一个双层优化模型来表述,上层模型的优化目标是最大化交通需求总量,下层则对出行者的路径选择行为和网络拥挤效应进行建模。但双层优化模型求解复杂且并不适用于大规模路网,大多双层模型在实际的应用中受到限制。因此,本文系统回顾了一种单层网络容量模型,即超额需求容量模型,并提出了一种高效的求解算法。算法的核心是利用基于路径的增广拉格朗日方法,多次求解一个考虑路段容量约束的用户均衡分配问题。数值实验结果表明,超额需求网络容量模型及其算法能够准确预测大规模城市交通网络在不同场景下的最大交通需求承载能力,为城市交通规划与管理提供有力的支持。在路网的承载极限状态下,某些流量已经达到或接近其容量的路段可能成为影响整个网络容量大小的瓶颈路段,可以据此为政府制定交通管控策略或道路改扩建投资提供依据,有望在实践中取得广泛应用。

Abstract:

Urban-road network capacity, which is a key indicator for assessing the balance between urban-traffic supply and demand and a crucial decision-making basis for government investments, refers to the maximum traffic flow that a network can accommodate under the constraint of link capacity. Investigations into network capacity enables the prediction of additional demand that can be accommodated by a network, thereby assisting managers in formulating practical and effective trafficplanning and management policies. Mathematically, such issues are typically formulated as bi-level optimization models, with the upper-level model maximizing the total traffic demand and the lowerlevel model modeling traveler path-choice behavior and network-congestion effects. Because of the complexity of solving bi-level optimization models and their impracticality for large-scale networks,most of these bi-level models are limited in practical applications. This study systematically reviews a single-level network capacity model, namely the excess-demand network-capacity model, and proposes an efficient solution algorithm. This study introduces the concept of an augmented network to describe the capacity of a road network. The maximum network capacity is obtained by iteratively solving the traffic assignment for each fixed-demand problem. Numerical experimental results show that the excess-demand network-capacity model and its algorithm can accurately predict the maximum traffic-demand capacity of large-scale urban-traffic networks under different cases, thus providing a robust tool for urban-traffic planning and management. In scenarios where the road network is at its capacity limit, certain links whose volumes have reached or approached their capacity may become bottleneck links, thus affecting the overall network capacity. This information can be utilized to guide governmental decisions regarding traffic control strategies or road-expansion investments,thereby offering widespread practical applications.

参考文献

[1]邢晓欢,程琳.路网布局结构对路网容量的影响研究[J].交通运输工程与信息学报, 2008, 6(3):109-114.XING Xiaohuan, CHENG Lin. Research of road network layout structure influence on road network capacity[J].Journal of Transportation Engineering and Information,2008, 6(3):109-114.

[2]牟瑞芳.交通环境承载力计算方法[J].交通运输工程与信息学报, 2006, 4(3):30-34.MOU Ruifang. A method to calculate the bearing capacity of traffic environmental system[J]. Journal of Transportation Engineering and Information, 2006, 4(3):30-34.

[3] WEBSTER F V, COBBE B M. Traffic Signals[M].Lodon:Her Majesty's Stationery Office,1966.

[4] YAGAR S. Capacity of a signalized road junction:critique and extensions[J]. Transportation Research, 1974, 8(2):137-147.

[5] YAGAR S. Addressing errors and omissions in paper on intersection capacity maximization[J]. Transportation Research Part B:Methodological, 1985, 19(1):81-84.

[6] CEYLAN H, BELL M G H. Reserve capacity for a road network under optimized fixed time traffic signal control[J]. Journal of Intelligent Transportation Systems, 2004, 8(2):87-99.

[7] YANG H, BELL M G H, MENG Q. Modeling the capacity and level of service of urban transportation networks[J]. Transportation Research Part B:Methodological,2000, 34(4):255-275.

[8] CHEN A, KASIKITWIWAT P. Modeling capacity flexibility of transportation networks[J]. Transportation Research Part A:Policy and Practice, 2011, 45(2):105-117.

[9] WANG J, DENG W. Optimizing capacity of signalized road network with reversible lanes[J]. Transport, 2015, 33(1):1-11.

[10] LIU X, CHEN Q. An algorithm for the mixed transportation network design problem[J]. PLoS One, 2016, 11(9):e0162618.

[11] YANG H, HUANG H J. Mathematical and Economic Theory of Road Pricing[M]:Amsterdam:Elsevier science, 2005.

[12] XU M, WANG G, GRANT-MULLER S, et al. Joint road toll pricing and capacity development in discrete transport network design problem[J]. Transportation, 2017, 44(4):731-752.

[13] CHEN A, YANG H, LO H K, et al. A capacity related reliability for transportation networks[J]. Journal of Advanced Transportation, 1999, 33(2):183-200.

[14] CHEN A, YANG H, LO H K, et al. Capacity reliability of a road network:an assessment methodology and numerical results[J]. Transportation Research Part B:Methodological, 2002, 36(3):225-252.

[15] CHEN A, CHOOTINAN P, WONG S C. New reserve capacity model of signal-controlled road network[J].Transportation Research Record:Journal of the Transportation Research Board, 2006, 1964(1):35-41.

[16] MORLOK E K, CHANG D J. Measuring capacity flexibility of a transportation system[J]. Transportation Research Part A:Policy and Practice, 2004, 38(6):405-420.

[17] CHEN A, KASIKITWIWAT P, YANG C. Alternate capacity reliability measures for transportation networks[J]. Journal of Advanced Transportation, 2013, 47(1):79-104.

[18] ZHENG Y, ZHANG X, LIANG Z. Multimodal subsidy design for network capacity flexibility optimization[J].Transportation Research Part A:Policy and Practice,2020, 140:16-35.

[19] XU X, CHEN A, JANSUWAN S, et al. Transportation network redundancy:complementary measures and computational methods[J]. Transportation Research Part B:Methodological, 2018, 114:68-85.

[20] XU X, CHEN A, XU G, et al. Enhancing network resilience by adding redundancy to road networks[J]. Transportation Research Part E:Logistics and Transportation Review, 2021, 154:102448.

[21]杜牧青.道路网络容量模型及算法[D].南京:东南大学, 2014.DU Muqing. Capacity model and algorithm of road network[D].Nanjing:Southeast University, 2014.

[22]涂圣文,过秀成,刘海强.绕城高速承载力的分析方法[J].交通运输工程与信息学报, 2013, 11(3):87-91.TU Shengwen, GUO Xiucheng, LIU Haiqiang. Analysis method on the maximum traffic capacity of ring expressway[J]. Journal of Transportation Engineering and Information, 2013, 11(3):87-91.

[23] ALLSOP R E. Estimating the traffic capacity of a signalized road junction[J]. Transportation Research, 1972, 6(3):245-255.

[24] WONG S C, YANG H. Reserve capacity of a signal-controlled road network[J]. Transportation Research Part B:Methodological, 1997, 31(5):397-402.

[25] GAO Z, SONG Y. A reserve capacity model of optimal signal control with user-equilibrium route choice[J].Transportation Research Part B:Methodological, 2002,36(4):313-323.

[26] CHIOU S W. Reserve capacity of signal-controlled road network[J]. Applied Mathematics and Computation,2007, 190(2):1602-1611.

[27] CHIOU S W. A hybrid approach for optimal design of signalized road network[J]. Applied Mathematical Modelling, 2008, 32(2):195-207.

[28] SUMALEE A, LUATHEP P, LAM W H K, et al. Evaluation and design of transport network capacity under demand uncertainty[J]. Transportation Research Record:Journal of the Transportation Research Board, 2009,2090(1):17-28.

[29] GE Y E, ZHANG H M, LAM W H K. Network reserve capacity under influence of traveler information[J]. Journal of Transportation Engineering, 2003, 129(3):262-270.

[30] MIANDOABCHI E, FARAHANI R Z. Optimizing reserve capacity of urban road networks in a discrete Network Design Problem[J]. Advances in Engineering Software, 2011, 42(12):1041-1050.

[31] XIAO H, GAO J, ZOU Z. Reserve capacity model based on variable demand for land-use development control[J].Transportation Planning and Technology, 2017, 40(2):199-212.

[32] ZANG Z, XU X, CHEN A, et al. Modeling the α-max capacity of transportation networks:a single-level mathematical programming formulation[J]. Transportation,2022, 49(4):1211-1243.

[33] KASIKITWIWAT P, CHEN A. Analysis of transportation network capacity related to different system capacity concepts. J East Asia Soc Trans Stud, 2005(6):1439-1454.

[34]张晓婷,吴兵.考虑特定OD分布形态的路网容量双层规划模型[J].交通运输工程与信息学报, 2012, 10(4):116-123.ZHANG Xiaoting, WU Bing. Bi-level programming model for the road network capacity based on the existed OD distribution[J]. Journal of Transportation Engineering and Information, 2012, 10(4):116-123.

[35] BEN-AYED O, BLAIR C E. Computational difficulties of bilevel linear programming[J]. Operations Research,1990, 38(3):556-560.

[36]高自友,孙会君.现代物流与交通运输系统:模型与方法[M].北京:人民交通出版社, 2005.

[37] AKAMATSU T, MIYAWAKI O. Maximum network capacity problem under the transportation equilibrium assignment[J]. Infrastructure Planning Review, 1995, 12:719-729.

[38] NIE Y, ZHANG H, LEE D H. Models and algorithms for the traffic assignment problem with link capacity constraints[J]. Transportation Research Part B:Methodological, 2004, 38(4):285-312.

[39] FENG L, XIE J, NIE Y, et al. Efficient algorithm for the traffic assignment problem with side constraints[J].Transportation Research Record, 2020, 2674:129-139.

[40] SHEFFI Y. Urban Transportation Networks[M]. Upper Saddle River:Prentice Hall,1985.

[41] XIE J, NIE Y M, LIU X. A greedy path-based algorithm for traffic assignment[J]. Transportation Research Record:Journal of the Transportation Research Board,2018, 2672(48):36-44.

[42]刘媛.基于关键路段流量限制的动态交通分配研究[J].交通运输工程与信息学报, 2017, 15(2):125-130.LIU Yuan. Research of the dynamic traffic assignment based on traffic volume restriction of critical links[J].Journal of Transportation Engineering and Information,2017, 15(2):125-130.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2024.02.015

中图分类号:U491

引用信息:

[1]彭茂珂,彭小东,黄俊等.再探交通网络超额需求容量模型与算法[J].交通运输工程与信息学报,2024,22(04):128-141+153.DOI:10.19961/j.cnki.1672-4747.2024.02.015.

基金信息:

国家自然科学基金项目(72371205)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文