323 | 0 | 9 |
下载次数 | 被引频次 | 阅读次数 |
【背景】随着我国城市轨道交通线网的快速扩张,轨道交通与常规公交在共同服务区内的客流竞争日益加剧,传统研究往往忽视环境因素的空间异质性影响,难以解释二者客流竞争时空分布格局的复杂作用机理。【目标】将表征社会经济指标、地铁公交线网属性及城市建成环境的外生因素纳入指标体系,通过引入多尺度地理加权回归(MGWR)模型,克服传统回归方法参数全局恒定和单一尺度的局限。【方法】以成都市中心城区“5+1”区域为例,分别统计工作日与非工作日期间地铁公交客流分担比,以揭示二者间客流竞争空间格局。通过整合多源时空数据,经变量多重共线性、空间自相关性及显著性检验,筛选12个关键影响因素构建普通最小二乘回归(OLS)、传统地理加权回归(GWR)与MGWR模型,定量分析了轨道交通与常规公交客流竞争格局的时空分异机理。【结果】轨道交通在整体客流分担中占主导,常规公交则在部分线网节点处分担地铁站影响范围内近35%的客流。MGWR模型的拟合优度接近0.8,综合性能最优,证实了二者客流竞争空间格局的形成机制高度依赖建成环境等外生因素的多尺度作用,其中轨道交通在其换乘站点、高房价区域、就业岗位集聚区、公共文体场馆与城市复合功能区等区域竞争优势显著,常规公交则在人口和教育资源密集、绿地景点周边更具相对竞争力。【应用】为基于地理空间差异,因地制宜构建轨道交通与常规公交优势互补、协同服务的城市公共交通系统提供了实证参考。
Abstract:[Background] The rapid expansion of metro networks in China has intensified the competition between metro and bus in overlapping service areas. Previous studies typically overlook the spatial heterogeneity of environmental factors and thus cannot adequately explain the complex spatiotemporal mechanisms underlying this competition. [Objective] This study integrates spatial influences from socioeconomic features, network topology, and the built environment into an analytical framework using a multiscale geographically weighted regression(MGWR) model to overcome the limitations of globally fixed parameters and single-scale analysis in conventional models. [Methods]Focusing on the“5 + 1”central areas of Chengdu, this study calculated the ridership ratio between metro and bus on both weekdays and non-weekdays to reveal their spatial competition patterns. By integrating multi-source spatiotemporal data and performing tests for multicollinearity, spatial autocorrelation, and significance, 12 key factors were selected to construct OLS, GWR, and MGWR models, thus quantitatively uncovering spatiotemporal heterogeneity in the ridership competition.[Results] The findings indicate that metro dominates the overall ridership share, whereas bus constitutes approximately 35% of the total ridership within the buffer zones of metro stops at certain network nodes. The goodness-of-fit of the MGWR model is close to 0.8 and its overall performance is superior, thus confirming that the formation mechanism of the ridership competition pattern between metro and bus depends significantly on the multiscale effects of exogenous factors such as the built environment. Metro shows distinct competitive advantages in transfer stops, high-priced residential areas, employment clusters, public cultural and sports facilities, and mixed-use zones, whereas bus dominates densely populated neighborhoods, schools, and tourism areas. [Application] The empirical evidence derived from this study contributes to the formulation of a geographically contextualized public transit system and the strategic enhancement of the intermodal complementarity between metro and bus networks.
[1]姜毅,王路,尹锦明.中等城市公共交通优先发展的策略研究——以泰州市为例[J].交通运输工程与信息学报, 2019, 17(1):117-121, 146.JIANG Yi, WANG Lu, YIN Jinming. Priority development strategies of public transport in medium sized cities——a case study of Taizhou City[J]. Journal of Transportation Engineering and Information, 2019, 17(1):117-121, 146.
[2]单肖年,胡颖,寇泷丹,等.碳达峰目标下城市公共交通系统低碳转型路径[J].交通运输工程与信息学报,2023, 21(3):1-12.SHAN Xiaonian, HU Ying, KOU Longdan, et al. Lowcarbon transformation path for urban public transportation system with carbon peak target[J]. Journal of Transportation Engineering and Information, 2023, 21(3):1-12.
[3]刘涵.轨道交通与常规公交站点布局及运营协调研究[D].北京:北京交通大学, 2018.LIU Han. Study on station layout and operating coordination between rail transit and bus transit[D]. Beijing:Beijing Jiaotong University, 2018.
[4]袁长伟,吴群琪,袁华智,等.考虑轨道交通作用效应的城市公交线网优化方法[J].公路交通科技, 2014, 31(8):119-125.YUAN Changwei, WU Qunqi, YUAN Huazhi, et al. Optimization of urban public transport network considering rail transit interaction effect[J]. Journal of Highway and Transportation Research and Development, 2014, 31(8):119-125.
[5]王兵,刘宇,陈钉均,等.成都市轨道交通与常规公交发展现状及协调研究[J].交通运输工程与信息学报,2018, 16(4):124-129.WANG Bing, LIU Yu, CHEN Dingjun, et al. Present situation and research of coordination for rail transit and conventional transit in Chengdu[J]. Journal of Transportation Engineering and Information, 2018, 16(4):124-129.
[6] WEI J J, LONG K J, GU J, et al. Optimizing bus line based on metro-bus integration[J]. Sustainability, 2020, 12(4):1493.
[7] LI X F, GAO Y E, ZHANG H Z, et al. Passenger travel behavior in public transport corridor after the operation of urban rail transit:a random forest algorithm approach[J].IEEE Access, 2020, 8:211303-211314.
[8]常炳阳,汪卓.存量视角下常规公交与轨道交通共线区段线网优化[J].人民公交, 2024(16):11-14.
[9] YANG C, YU C, DONG W, et al. Substitutes or complements? Examining effects of urban rail transit on bus ridership using longitudinal city-level data[J]. Transportation Research Part A:Policy and Practice, 2023, 174:103728.
[10]成都市规划设计研究院. 2021年成都市绿色交通运行特征研究报告[R].成都:成都市规划设计研究院,2022.
[11]梁丽娟,吴娇蓉,王昊.道路公交与轨道交通竞争选择模型研究——基于上海轨道交通6号线客运走廊[J].城市轨道交通研究, 2009, 12(9):30-34.LIANG Lijuan, WU Jiaorong, WANG Hao. Competition model between urban rail and bus transit[J]. Urban Mass Transit, 2009, 12(9):30-34.
[12] GAO Y E, GUO Z, LONG Y J, et al. Passengers’travel behavior before and after the adjustment of regular bus collinear sections:a case study in the incipient phase of metro operation in Xiamen[J]. Travel Behaviour and Society, 2022, 26:221-230.
[13]刘梦琪,瞿何舟.基于轨道交通与常规公交组合的出行路径选择研究[J].交通运输工程与信息学报, 2018,16(4):63-68.LIU Mengqi, QU Hezhou. Study on the route choice using the combination of rail and bus transit[J]. Journal of Transportation Engineering and Information, 2018, 16(4):63-68.
[14]张杰林,李铁柱.基于竞争模型的轨道交通与常规公交共线分析[J].交通信息与安全, 2014, 32(4):108-112, 118.ZHANG Jielin, LI Tiezhu. Urban rail transit and bus collinear analysis based on competition model[J]. Journal of Transport Information and Safety, 2014, 32(4):108-112, 118.
[15]杨骐畅,成子龙,吴奇,等.基于K-Means聚类分析的长沙市常规公交与轨道交通竞合关系研究[J].市政技术, 2024, 42(5):138-144, 219.YANG Qichang, CHENG Zilong, WU Qi, et al. Research on the coopetition relationship between bus transit and rail transit in Changsha City based on K-Means cluster analysis[J]. Journal of Municipal Technology,2024, 42(5):138-144, 219.
[16]范海雁,杨晓光,夏晓梅,等.基于轨道交通的常规公交线网调整方法[J].城市轨道交通研究, 2005,(4):36-38.FAN Haiyan, YANG Xiaoguang, XIA Xiaomei, et al.Bus line networks adjustment on rail transit basis[J]. Urban Mass Transit, 2005,(4):36-38.
[17]孙妍,帅斌,黄文成.城市轨道交通通勤客流路径选择改进模型研究[J].交通运输工程与信息学报, 2019, 17(4):75-81.SUN Yan, SHUAI Bin, HUANG Wencheng. Study on the improvement model of commuter passenger flow route selection in urban rail transit[J]. Journal of Transportation Engineering and Information, 2019, 17(4):75-81.
[18] GUO Z J, LIU J, ZHAO P X, et al. Spatiotemporal heterogeneity of the shared e-scooter–public transport relationships in Stockholm and Helsinki[J]. Transportation Research Part D:Transport and Environment, 2023,122:103880.
[19] YU Y, ZANG P, YE B J, et al. Exploring the complex relationship between metro and shared bikes in the built environment:competition, connection, and complementation[J]. Sustainable Cities and Society, 2024, 115:105870.
[20] CERVERO R. Built environments and mode choice:toward a normative framework[J]. Transportation Research Part D:Transport and Environment, 2002, 7(4):265-284.
[21] CHEN C, GONG H M, PAASWELL R. Role of the built environment on mode choice decisions:additional evidence on the impact of density[J]. Transportation, 2008,35(3):285-299.
[22]杨西宁,邓琼华,杨硕.建成环境对居民出行方式选择影响效应的异质性研究[J].交通运输工程与信息学报, 2019, 17(2):128-137.YANG Xining, DENG Qionghua, YANG Shuo. Investigation of heterogeneous effects of built environment on a household member’s travel mode choice[J]. Journal of Transportation Engineering and Information, 2019, 17(2):128-137.
[23] LI Z T, TANG J J, YU T J, et al. Understanding the interplay among urban public transport modes:spatial variation and built environment effects[J]. Journal of Cleaner Production, 2024, 479:144038.
[24] GEORGIADIS G, PAPAIOANNOU P, POLITIS I. Rail and road public transport:cooperation or coexistence?[J]. Transportation Research Interdisciplinary Perspectives, 2020, 5:100122.
[25] YUE M, KANG C, ANDRIS C, et al. Understanding the interplay between bus, metro, and cab ridership dynamics in Shenzhen, China[J]. Transactions in GIS, 2018, 22(3):855-871.
[26] LU B B, CHARLTON M, HARRIS P, et al. Geographically weighted regression with a non-euclidean distance metric:a case study using hedonic house price data[J].International Journal of Geographical Information Science, 2014, 28(4):660-681.
[27]李聪颖,吴佳西,张洪涛,等.建成环境对城市机动车出行时空异质影响研究[J].交通运输工程与信息学报, 2024, 22(4):52-66.LI Congying, WU Jiaxi, ZHANG Hongtao, et al. Spatiotemporal heterogeneous effects of built environment on urban motorized travel[J]. Journal of Transportation Engineering and Information, 2024, 22(4):52-66.
[28] SHI Y, ZENG L. How do built environment characteristics influence metro-bus transfer patterns across metro station types in Shanghai?[J]. Journal of Transport Geography, 2025, 123:104137.
[29]贺建炜,彭金栓.城市轨道交通与常规公交竞争与合作分析[J].智能城市, 2016, 2(6):94-95.
[30] FOTHERINGHAM A S, BRUNSDON C. Local forms of spatial analysis[J]. Geographical Analysis, 1999, 31(4):340-358.
[31] SULEKAN A, SYED JAMALUDIN S S. Review on Geographically Weighted Regression(GWR)approach in spatial analysis[J]. Malaysian Journal of Fundamental and Applied Sciences, 2020, 16(2):173-177.
[32]卢宾宾,葛咏,秦昆,等.地理加权回归分析技术综述[J].武汉大学学报(信息科学版), 2020, 45(9):1356-1366.LU Binbin, GE Yong, QIN Kun, et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9):1356-1366.
[33] FOTHERINGHAM A S, YANG W B, KANG W. Multiscale geographically weighted regression(MGWR)[J].Annals of the American Association of Geographers,2017, 107(6):1247-1265.
[34]沈体雁,于瀚辰,周麟,等.北京市二手住宅价格影响机制——基于多尺度地理加权回归模型(MGWR)的研究[J].经济地理, 2020, 40(3):75-83.SHEN Tiyan, YU Hanchen, ZHOU Lin, et al. On hedonic price of second-hand houses in Beijing based on multiscale geographically weighted regression:scale law of spatial heterogeneity[J]. Economic Geography, 2020, 40(3):75-83.
[35]马雄威.线性回归方程中多重共线性诊断方法及其实证分析[J].华中农业大学学报(社会科学版), 2008(2):78-81, 85.MA Xiongwei. Diagnosis and empirical analysis on multicollinearity in linear regression model[J]. Journal of Huazhong Agricultural University(Social Sciences Edition), 2008(2):78-81, 85.
[36]张松林,张昆.全局空间自相关Moran指数和G系数对比研究[J].中山大学学报(自然科学版), 2007, 46(4):93-97.ZHANG Songlin, ZHANG Kun. Comparison between general Moran’s Index and Getis-Ord general G of spatial autocorrelation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(4):93-97.
[37]郑乐,高良鹏,陈学武.基于多源数据的地铁公交换乘量影响因素与空间异质性分析[J].交通运输系统工程与信息, 2023, 23(2):128-138.ZHENG Yue, GAO Liangpeng, CHEN Xuewu. Investigating influencing factors on metro-bus transfer demand incorporating spatial heterogeneity based on multi-source data[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(2):128-138.
[38]裴莹莹,杨敏明.城市轨道交通与常规公交耦合关系分析[J].交通与运输, 2021, 34(S1):121-125, 141.PEI Yingying, YANG Minming. Coupling relation analysis between rail transit and bus[J]. Traffic&Transportation, 2021, 34(S1):121-125, 141.
[39]朱飘,龙科军.轨道交通与常规公交竞合关系一体化研究[J].交通科学与工程, 2019, 35(1):94-100.ZHU Piao, LONG Kejun. Research on the integration of rail transit and conventional bus co-opetition[J]. Journal of Transport Science and Engineering, 2019, 35(1):94-100.
[40] LI Z T, TANG J J, JI Y F, et al. Relationship between the built environment and metro usage patterns:a motifbased perspective[J]. Tunnelling and Underground Space Technology, 2025, 159:106488.
[41] YANG L C, YU B J, LIANG Y, et al. Time-varying and non-linear associations between metro ridership and the built environment[J]. Tunnelling and Underground Space Technology, 2023, 132:104931.
[42] BIVINA G R, GUPTA A, PARIDA M. Walk accessibility to metro stations:an analysis based on meso-or micro-scale built environment factors[J]. Sustainable Cities and Society, 2020, 55:102047.
[43] KUBY M, BARRANDA A, UPCHURCH C. Factors influencing light-rail station boardings in the United States[J]. Transportation Research Part A:Policy and Practice,2004, 38(3):223-247.
[44]郭鹏,陈晓玲.基于GIS的城市轨道交通站点客流辐射区域算法[J].中国铁道科学, 2007, 28(6):128-132.GUO Peng, CHEN Xiaoling. Algorithm for generating the radiation service areas of passenger flow at urban mass transit stations based on GIS[J]. China Railway Science, 2007, 28(6):128-132.
[45] WANG Z B, SONG J R, ZHANG Y C, et al. Spatial heterogeneity analysis for influencing factors of outbound ridership of subway stations considering the optimal scale range of“7D”built environments[J]. Sustainability, 2022, 14(23):16314.
[46]马超群,王玉萍,陈宽民.城市轨道交通与常规公交之竞争模型[J].交通运输系统工程与信息, 2007, 7(3):140-143.MA Chaoqun, WANG Yuping, CHEN Kuanmin. Competition model between urban rail and bus transit[J]. Journal of Transportation Systems Engineering and Information Technology, 2007, 7(3):140-143.
[47]乐丹怡.城市公共交通分担率影响因素及提高措施[J].交通企业管理, 2016, 31(11):10-12.
[48]李岩辉.城市轨道交通客流时空分布特性研究[J].中国铁路, 2021(2):65-75.LI Yanhui. Study on spatial-temporal distribution characteristics of passenger flow in urban rail transit[J]. China Railway, 2021(2):65-75.
[49]徐新良.中国人口空间分布公里网格数据集[DB/OL].资源环境科学数据注册与出版系统,(2017-12-11)[2025-01-25]. https://www. resdc. cn/DOI/DOI. aspx?DOIID=32.
[50] BORDOLOI R, MOTE A, SARKAR P P, et al. Quantification of land use diversity in the context of mixed land use[J]. Procedia-Social and Behavioral Sciences, 2013,104:563-572.
[51] SONG Y, MERLIN L, RODRIGUEZ D. Comparing measures of urban land use mix[J]. Computers, Environment and Urban Systems, 2013, 42:1-13.
[52]马壮林,杨兴,胡大伟,等.城市轨道交通车站客流特征影响程度分析[J].清华大学学报(自然科学版),2023, 63(9):1428-1439.MA Zhuanglin, YANG Xing, HU Dawei, et al. Influence degree analysis of ridership characteristics at urban rail transit stations[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9):1428-1439.
[53]于二泽,周继彪.城市公共自行车租还不均衡的时空特征与影响因素[J].交通运输工程与信息学报, 2023,21(2):141-159.YU Erze, ZHOU Jibiao. Exploring the spatial-temporal characteristics and influence factors of supply-demand gap in bike sharing systems[J]. Journal of Transportation Engineering and Information, 2023, 21(2):141-159.
[54]杨永平,赵东,边颜东.我国城市轨道交通发展的政策变迁[J].都市快轨交通, 2019, 32(1):4-8.YANG Yongping, ZHAO Dong, BIAN Yandong. Policy changes in urban rail transit development in China[J].Urban Rapid Rail Transit, 2019, 32(1):4-8.
[55]周雨阳,张梦瑶,李长锦,等.地面公交运营效率与服务质量评价综述[J].交通运输工程与信息学报, 2024,22(2):1-20.ZHOU Yuyang, ZHANG Mengyao, LI Changjin, et al.Bus operation efficiency and service quality:a review[J]. Journal of Transportation Engineering and Information, 2024, 22(2):1-20.
[56]吴欣玥,廖家仪,张晓荣.基于多源数据融合的成都市职住空间特征及影响因素研究[J].规划师, 2023, 39(1):120-127.WU Xinyue, LIAO Jiayi, ZHANG Xiaorong. Employment-residence space characters and their influencing factors based on multi-sourced data integration, Chengdu[J]. Planners, 2023, 39(1):120-127.
[57]卫龙,高红梅.城市居民职住空间关系研究进展综述[J].交通运输工程与信息学报, 2016, 14(4):55-63.WEI Long, GAO Hongmei. Survey of urban jobs-housing spatial relationship research[J]. Journal of Transportation Engineering and Information, 2016, 14(4):55-63.
[58]高明瑶,石红国.基于改进PSO算法的轨道交通接运公交线路优化问题[J].交通运输工程与信息学报,2019, 17(4):49-54.GAO Mingyao, SHI Hongguo. Optimization of a rail transit line based on an improved particle swarm optimization algorithm[J]. Journal of Transportation Engineering and Information, 2019, 17(4):49-54.
基本信息:
DOI:10.19961/j.cnki.1672-4747.2025.03.030
中图分类号:U293.13;U491.17
引用信息:
[1]姜小美,徐占东,陈正贤等.轨道交通与常规公交客流竞争的空间异质性分析[J].交通运输工程与信息学报,2025,23(03):213-230.DOI:10.19961/j.cnki.1672-4747.2025.03.030.
基金信息:
国家自然科学基金项目(72201220); 四川省自然科学基金项目(2024NSFSC1056)