nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.23 16-31
考虑交互效应的建成环境对网约车时空分异影响分析
基金项目(Foundation): 山东省自然科学基金项目(ZR2023MG008)
邮箱(Email): gaoge1@sdust.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2024.10.016
摘要:

【目标】为探究不同建成环境因子对网约车出行的交互影响,厘清影响显著因子对网约车出行空间分异性的影响。【数据】采用海口市滴滴出行数据和多源地理空间数据(Worldpop人口数据、路网数据、网格GDP数据以及POI数据),基于多源空间数据从密度、设计、多样性、公共交通近邻度、目的地可达性和社会经济属性6个维度构建建成环境指标。【方法】首先,运用最优参数地理探测器模型(OPGD)分析因子对网约车出行的独立和交互影响;随后,采用空间自相关和多尺度地理加权回归模型(MGWR)进一步识别工作日和周末不同时段建成环境对网约车出行的时空分异性。【结论】OPGD模型揭示了土地利用混合、人均GDP等对网约车出行影响较低,餐饮、居住区与其他因子交互能显著提高对网约车出行影响的解释力;MGWR模型识别显著影响因子对网约车出行影响存在明显的空间异质性。【应用】研究结果能够为城市管理和规划者提供建议,为优化网约车出行提供支撑。

Abstract:

[Objective] To investigate the interactive effects of different built-environment factors on online ride-hailing trips and to clarify the effects of significant factors on the spatial heterogeneity of online ride-hailing trips. [Data] Didi travel data and multisource geospatial data(worldpop population data, road network data, grid GDP(Gross Domestic Product) data, and POI(Point of Interest) data) from Haikou are used to construct the built-environment indicators from six dimensions: density,design, diversity, distance to transit, destination accessibility, and socioeconomic attributes. [Methods] First, an optimal parameter geographic detector model(OPGD) is used to analyze the independent and interactive effects of factors on online ride-hailing trips. Subsequently, spatial autocorrelation and multiscale geographically weighted regression(MGWR) models are used to identify the spatiotemporal heterogeneity of the built environment on online ride-hailing trips during different periods on weekdays and weekends. [Conclusions] The OPGD model shows that mixed-land use and per capita GDP minimally affect online ride-hailing trips, and that the interaction between catering,residential areas, and other factors can significantly improve the explanatory power of the effect on online ride-hailing trips. The MGWR model identifies significant influencing factors that exhibit clear spatial heterogeneity in their effect on online ride-hailing trips. [Application] The results can provide suggestions for urban management and planners and support the optimization of online ridehailing travel.

参考文献

[1] ZHU P, MO H. The potential of ride-pooling in VKT reduction and its environmental implications[J]. Transportation Research Part D:Transport and Environment, 2022,103:103155.

[2]马健霄,赵飞燕,尹超英,等.建成环境和出租车需求对网约车出行需求影响的时空间分异模式[J].交通运输系统工程与信息, 2023, 23(5):136-145.MA Jianxiao, ZHAO Feiyan, YIN Chaoying, et al. Spatial-temporal heterogeneity effects of built environment and taxi demand on ride-hailing demand[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(5):136-145.

[3]邵海雁,靳诚,钟业喜,等.海口城市建成环境对高峰期网约车通勤出行的影响:基于滴滴出行数据[J].人文地理, 2022, 37(5):130-139.SHAO Haiyan, JIN Cheng, ZHONG Yexi, et al. The impact of Haikou’s urban built environment on online carhailing commuting during peak hours:based on didi travel data[J]. Human Geography, 2022, 37(5):130-139.

[4]于乐,谢秉磊,张鹍鹏,等.职住地建成环境对网约车通勤出行影响研究[J].交通信息与安全, 2019, 37(6):149-155.YU Le, XIE Binglei, ZHANG Kunpeng, et al. Impacts of built environments on car-hailing commuting in job-housing locations[J]. Journal of Transport Information and Safety, 2019, 37(6):149-155.

[5]潘义勇,徐家聪,尤逸文,等.网约车出行需求影响因素多尺度空间异质性分析[J/OL].吉林大学学报(工学版):1-9.(2024-03-06)[2024-12-26].https://doi.org/10.13229/j.cnki.jdxbgxb.20230789.PAN Yiyong, XU Jiacong, YOU Yiwen,et al. Multi-scale spatial heterogeneity analysis of influencing factors of ride-hailing travel demand[J/OL].Journal of Jilin University(Engineering and Technology Edition):1-9.(2024-03-06)[2024-12-26]. https://doi. org/10.13229/j. cnki. jdxbgxb.20230789.

[6]周梦杰,白紫月,高兴,等.海口市网约车乘客出行时空模式挖掘[J].测绘科学, 2021, 46(10):177-184, 218.ZHOU Mengjie, BAI Ziyue, GAO Xing, et al. Excavation of the spatio-temporal pattern of passenger travel in Haikou city[J]. Science of Surveying and Mapping, 2021, 46(10):177-184, 218.

[7]耿雪琳,许伦辉.城市建成环境对网约车客流的影响研究[J].合肥工业大学学报(自然科学版), 2023, 46(9):1247-1253.GENG Xuelin, XU Lunhui. Influence of urban built environment on online car-hailing passenger flow[J]. Journal of Hefei University of Technology(Natural Science),2023, 46(9):1247-1253.

[8]龙雪琴,赵欢,周萌,等.成都市建成环境对网约车载客点影响的时空分异性研究[J].地理科学, 2022, 42(12):2076-2084.LONG Xueqin, ZHAO Huan, ZHOU Meng, et al. Spatiotemporal heterogeneity of the impact of built environment in Chengdu on online car-hailing passengers’pick-up points[J]. Geographical Science, 2022, 42(12):2076-2084.

[9]杨燕,胥川.出租车和网约车载客空间特征分析[J].交通运输工程与信息学报, 2020, 18(1):68-76.YANG Yan, XU Chuan. Analysis the spatial characteristic of taxi and ridesourcing service trips[J]. Journal of Transportation Engineering and Information, 2020, 18(1):68-76.

[10] LIU F, GAO F, YANG L, et al. Exploring the spatially heterogeneous effect of the built environment on ridehailing travel demand:a geographically weighted quantile regression model[J]. Travel Behaviour and Society,2022, 29:22-33.

[11] DEAN M D, KOCKELMAN K M. Spatial variation in shared ride-hail trip demand and factors contributing to sharing:Lessons from Chicago[J]. Journal of Transport Geography, 2021, 91:102944.

[12] LIU S, JIANG H, CHEN Z. Quantifying the impact of weather on ride-hailing ridership:Evidence from Haikou, China[J]. Travel Behaviour and Society, 2021, 24:257-269.

[13] G?DDE J, RUHRORT L, ALLERT V, et al. User characteristics and spatial correlates of ride-pooling demand–Evidence from Berlin and Munich[J]. Journal of Transport Geography, 2023, 109:103596.

[14] YANG H, LUO P, LI C, et al. Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates[J]. Transportation Research Part A:Policy and Practice, 2023, 169:103577.

[15] ZHU P, HUANG J, WANG J, et al. Understanding taxi ridership with spatial spillover effects and temporal dynamics[J]. Cities, 2022, 125:103637.

[16]李聪颖,吴佳西,张洪涛,等.建成环境对城市机动车出行时空异质影响研究[J].交通运输工程与信息学报, 2024, 22(4):52-66.LI Congying, WU Jiaxi, ZHANG Hongtao, et al. Spatiotemporal heterogeneous effects of built environment on urban motorized travel[J]. Journal of Transportation Engineering and Information, 2024, 22(4):52-66.

[17]李甜,毛新博,聂莉台,等.建成环境对网约车出行行为的影响分析[J].交通与运输, 2021, 37(2):83-88.LI Tian, MAO Xinbo, NIE Litai, et al. The impact of built environment on ride-hailing behavior[J]. Traffic&Transportation, 2021, 37(2):83-88.

[18] HUANG G, QIAO S, YEH A G. Spatiotemporally heterogeneous willingness to ridesplitting and its relationship with the built environment:a case study in Chengdu, China[J]. Transportation Research Part C:Emerging Technologies, 2021, 133:103425.

[19] WENG J, HE H, WANG Y, et al. Influence model of regional taxi travel demand based on Geographical weighted regression[C]//2020 Forum on Integrated and Sustainable Transportation Systems(FISTS). Netherlands:IEEE,2020:198-204.

[20] WANG Z, ZHANG Y, JIA B, et al. Comparative analysis of usage patterns and underlying determinants for ridehailing and traditional taxi services:a Chicago case study[J]. Transportation Research Part A:Policy and Practice, 2024, 179:103912.

[21] ZHENG Z, ZHANG J, ZHANG L, et al. Understanding the impact of the built environment on ride-hailing from a spatio-temporal perspective:a fine-scale empirical study from China[J]. Cities, 2022, 126:103706.

[22] LYU T, WANG Y, JI S, et al. A multiscale spatial analysis of taxi ridership[J]. Journal of Transport Geography,2023, 113:103718.

[23]王振报,龚鑫,吴巍,等.建成环境对网约车出行需求影响机制研究[J].长沙理工大学学报(自然科学版),2023, 20(2):104-114.WANG Zhenbao, GONG Xin, WU Wei, et al. Research on the influence mechanism of built environment on online car hailing travel demand[J]. Journal of Changsha University of Science&Technology(Natural Science),2023, 20(2):104-114.

[24]谭德明,饶佳艺.深圳市都市型滨水空间活力影响因素分析[J].地球信息科学学报, 2023, 25(4):809-822.TAN Deming, RAO Jiayi. Analysis on influencing factors of urban waterfront space vitality in Shenzhen[J].Journal of Geo-Information Science, 2023, 25(4):809-822.

[25]张明羽,张正勇,刘琳,等.中国天山山体效应评估及空间分异归因[J].地理学报, 2023, 78(5):1254-1270.ZHANG Mingyu, ZHANG Zhengyong, LIU Lin, et al.Spatio-temporal pattern and attribution analysis of mass elevation effect in Tianshan Mountains of China[J]. Acta Geographica Sinica, 2023, 78(5):1254-1270.

[26]海口市政府.交通运输综述[R/OL].(2024-06-20)[2024-09-06]. https://www.haikou.gov.cn/sq/hkgk/hjjt/202105/t273208.shtml

[27] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3):379-423.

[28] CHEN Y, WU G, GE Y, et al. Mapping gridded gross domestic product distribution of China using deep learning with multiple geospatial big data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:1791-1802.

[29]自然资源部.自然资源部关于印发《国土空间调查、规划、用途管制用地用海分类指南》的通知[S/OL].(2023-11-22)[2024-09-06]. https://www.gov.cn/zhengce/zhengceku/202311/content_6917279.htm.

[30]王劲峰,徐成东.地理探测器:原理与展望[J].地理学报, 2017, 72(1):116-134.WANG Jinfeng, XU Chengdong. Geodetector:principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.

[31] SONG Y, WANG J, GE Y, et al. An optimal parametersbased geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis:cases with different types of spatial data[J]. GIScience&Remote Sensing, 2020, 57(5):593-610.

[32] CAO F, GE Y, WANG J F. Optimal discretization for geographical detectors-based risk assessment[J]. GIScience&Remote Sensing, 2013, 50(1):78-92.

[33] OSHAN T M, LI Z, KANG W, et al. Mgwr:a Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale[J]. ISPRS International Journal of Geo-Information, 2019, 8(6):269.

[34] YU H, FOTHERINGHAM A S, Li Z, et al. Inference in multiscale geographically weighted regression[J]. Geographical Analysis, 2020, 52(1):87-106.

[35] YU H,PENG Z R.Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression[J].Journal of Transport Geography,2019,75:147-163.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2024.10.016

中图分类号:U495

引用信息:

[1]毛新博,高歌,李甜等.考虑交互效应的建成环境对网约车时空分异影响分析[J].交通运输工程与信息学报,2025,23(02):16-31.DOI:10.19961/j.cnki.1672-4747.2024.10.016.

基金信息:

山东省自然科学基金项目(ZR2023MG008)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文