nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.23 150-160
基于鲁棒分层控制的虚拟编组列车动态解编方法
基金项目(Foundation): 国家自然科学基金面上项目(52472334); 中国国家铁路集团有限公司科技研究开发计划资助项目(K2023X013); 北京市自然科学基金资助项目(L241051)
邮箱(Email): xwang@bjtu.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2024.11.002
摘要:

【背景】随着虚拟编组列车技术的应用,列车在道岔区段的动态解编成为确保系统安全与效率的关键问题。然而,现有控制方法难以同时应对不确定性和外部干扰,导致列车控制精度和稳定性受到影响。【目标】本研究旨在提出一种鲁棒的分层控制方法,以提高虚拟编组列车在道岔区段动态解编过程中的运行效率和稳定性。【方法】在深入分析虚拟编组列车的动态运行过程及相关约束条件的基础上,本文设计了一个分层控制框架,上层采用线性二次优化(Linear Quadratic Regulator,LQR)模型,通过优化计算确定列车通过道岔的最优策略;下层则采用基于管的扰动模型预测控制(Tube-basedModel Predictive Control,Tube-based MPC)方法,实时执行上层策略并有效应对不确定性和外部扰动。【结果】与传统模型预测控制(MPC)方法进行对比,仿真结果表明,所提出的方法在速度控制精度上提高了约7.5%,在位置控制精度上提高了约20.5%。【结结论论】实验验证了分层控制策略的有效性,并证明了Tube-based MPC在复杂场景下的鲁棒性和优越性,为虚拟编组列车的道岔区段动态解编提供了有效的解决方案。

Abstract:

[Background] Owing to the application of virtual coupled-train technology, the dynamic decoupling of trains in switch segments has become a critical issue for ensuring system safety and efficiency. However, existing control methods struggle to address uncertainty and external disturbances simultaneously, thus resulting in compromised control precision and stability. [Objective] This study proposes a robust hierarchical control method to improve the operational efficiency and stability of virtual coupled trains during the dynamic decoupling of switch segments. [Methods] Based on a comprehensive analysis of the dynamic operation process and constraints related to virtual coupled trains, a hierarchical control framework is designed in this study. The upper layer uses a linear quadratic regulator model to determine the optimal strategy for trains to pass through the switch-through optimization, whereas the lower layer employs a tube-based model predictive control(MPC) method to execute the upper-layer strategy in real time while effectively addressing uncertainty and external disturbances. [Results] Compared with the conventional MPC method, the proposed method improves the speed and position control accuracies by approximately 7.5% and 20.5%, respectively, as shown by simulation results. [Conclusions] The experimental results validate the effectiveness of the hierarchical control strategy and demonstrate the robustness and superiority of tube-based MPC in complex scenarios, thus providing an effective solution for the dynamic decoupling of virtual coupled trains in switch segments.

参考文献

[1]曹源,温佳坤,马连川.重大疫情下的列车动态编组与调度[J].交通运输工程学报, 2020, 20(3):120-128.CAO Yuan, WEN Jiakun, MA Lianchuan. Dynamic marshalling and scheduling of trains in major epidemics[J].Journal of Traffic and Transportation Engineering, 2020,20(3):120-128.

[2] AOUN J, QUAGLIETTA E, GOVERDE R M P, et al. A hybrid Delphi-AHP multi-criteria analysis of Moving Block and Virtual Coupling railway signalling[J]. Transportation Research Part C:Emerging Technologies, 2021,129:103250.

[3] AHMAD E, HE Y, LUO Z, et al. A hybrid long short-term memory and Kalman filter model for train trajectory prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7):7125-7139.

[4]冯红艳,康雷雷,刘澜.智能网联环境下单交叉口车辆轨迹优化[J].交通运输工程与信息学报, 2024, 22(1):25-38.FENG Hongyan, KANG Leilei, LIU Lan. Trajectory optimization of vehicles at isolated intersection in a connected and automated environment[J]. Journal of Transportation Engineering and Information, 2024, 22(1):25-38.

[5] ZHANG K, GAO J, XU Z, et al. Headway compression oriented trajectory optimization for virtual coupling of heavy-haul trains[J]. Control Engineering Practice, 2024,143:105784.

[6] CHEN C, ZHU L, WANG X. Enhancing subway efficiency on Y-shaped lines:a dynamic scheduling model for virtual coupling train control[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8):10020-10034.

[7]钟林环,徐光明,邓连波,等.面向灵活编组的城轨列车开行频率与时刻表综合优化[J].交通运输工程与信息学报, 2024, 22(2):104-115.ZHONG Linhuan, XU Guangming, DENG Lianbo, et al.Integrated optimization of train frequency and timetable for urban railway trains for flexible train composition[J].Journal of Transportation Engineering and Information,2024, 22(2):104-115.

[8] CHEN B, ZHANG L, CHENG G, et al. A novel approach for train tracking in virtual coupling based on soft actorcritic[J]. Actuators, 2023, 12(12):447.

[9]侯涛,唐丽,牛宏侠.基于数据驱动的高速列车速度复合控制研究[J].交通运输系统工程与信息, 2023, 23(3):145-152.HOU Tao, TANG Li, NIU Hongxia. Data-driven speed compound control of high-speed train[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(3):145-152.

[10] LUO X, TANG T, CHAI M, et al. A hierarchical MPC approach for arriving-phase operation of virtually coupled train set[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7):7237-7249.

[11] YAN X H, CAI B G, NING B, et al. Online distributed cooperative model predictive control of energy-saving trajectory planning for multiple high-speed train movements[J]. Transportation Research Part C:Emerging Technologies, 2016, 69:60-78.

[12]林俊亭,倪铭君.基于扩张状态观测器的虚拟编组触发模型预测控制[J].交通运输系统工程与信息, 2023,23(4):134-146.LIN Junting, NI Mingjun. Trigger model predictive control based on extended state observers for virtual coupling[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4):134-146.

[13] LIU Y, ZHOU Y, SU S, et al. Control strategy for stable formation of high-speed virtually coupled trains with disturbances and delays[J]. Computer-Aided Civil and Infrastructure Engineering, 2023, 38(5):621-639.

[14] ZHAO H, DAI X, ZhANG Q, et al. Robust event-triggered model predictive control for multiple high-speed trains with switching topologies[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5):4700-4710.

[15]张鑫,祝子钧,陈凯生.基于自适应终端滑模的高速列车迭代学习速度控制[J].铁道学报, 2024, 46(9):76-84.ZHANG Xin, ZHU Zijun, CHEN Kaisheng. Adaptive terminal sliding mode based iterative learning speed control for high-speed trains[J]. Journal of the China Railway Society, 2024, 46(9):76-84.

[16] HUANG D, YI S, LI X. Accurate parking control for urban rail trains via robust adaptive backstepping approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11):21790-21798.

[17] ZHANG Z, SONG H, WANG H, et al. A model predictive control strategy with switching cost functions for cooperative operation of trains[J]. Science China Information Sciences, 2023, 66(7):172206.

[18]王静,雷利利,熊晓夏,等.考虑通信延迟的智能车队纵向控制[J].交通运输工程与信息学报,2024,22(4):37-51.WANG Jing, LEI Lili, XIONG Xiaoxia, et al. Longitudinal control of intelligent fleet considering communication delay[J]. Journal of Transportation Engineering and Information,2024,22(4):37-51

[19] GAO S G, DONG H R, NING B. Characteristic modelbased all-coefficient adaptive control for automatic train control systems[J]. Science China-Information Sciences,2014, 57(9):1-12.

[20]徐朝安,高士根,文韬.高速列车自主追踪的自适应强化学习虚拟编组控制方法[J].铁道技术标准(中英文),2023,5(10):8-14.XU Chaoan, GAO Shigen, WEN Tao. Adaptive reinforcement learning control of virtually coupled highspeed trains for autonomous tracking[J]. Railway Technical Standard(Chinese&English), 2023, 5(10):8-14.

[21] ZHANG Q, WANG H, ZHANG Y, et al. An adaptive safety control approach for virtual coupling system with model parametric uncertainties[J]. Transportation Research Part C:Emerging Technologies, 2023, 154:104235.

[22] LI S, YANG L, GAO Z. Adaptive coordinated control of multiple high-speed trains with input saturation[J]. Nonlinear Dynamics, 2016, 83(4):2157-2169.

[23]余琼霞,候怡腾,孙俊杰,等.高速列车受限自适应有限次迭代学习容错控制[J].交通运输系统工程与信息, 2024, 24(3):140-150.YU Qiongxia, HOU Yiteng, SUN Junjie, et al. Constrained adaptive finite-iteration learning fault-tolerant control for high-speed train[J]. Journal of Transportation Systems Engineering and Information Technology,2024, 24(3):140-150.

[24] LIU Y F, LIU R H, WEI C F, et al. Distributed model predictive control strategy for constrained high-speed virtually coupled train set[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1):171-183.

[25] WANG J, LIU H, TANG T, et al. A space-time interval based protection method for virtual coupling[C]//2022China Automation Congress(CAC). Xiamen:IEEE,2022:4906-4911.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2024.11.002

中图分类号:U284.5

引用信息:

[1]朱才梵,王悉,杨欣等.基于鲁棒分层控制的虚拟编组列车动态解编方法[J].交通运输工程与信息学报,2025,23(02):150-160.DOI:10.19961/j.cnki.1672-4747.2024.11.002.

基金信息:

国家自然科学基金面上项目(52472334); 中国国家铁路集团有限公司科技研究开发计划资助项目(K2023X013); 北京市自然科学基金资助项目(L241051)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文