448 | 0 | 13 |
下载次数 | 被引频次 | 阅读次数 |
【背景】空域资源的精细化管理对发展低空经济具有重要影响,低空空域适飞性评估是低空空域管理的关键前提,其受地面建成环境的影响机制尚缺乏系统分析。【目标】评估城市低空空域的适飞性与空间可开发性,揭示地面建成环境对其影响机制。【方法】基于多源地理空间数据,构建包含禁飞缓冲区划定、空间集聚分析(全局/局部莫兰指数)和影响因素回归(OLS)的低空适飞性识别框架。【数据】选取中国55座城市,整合GHS-UCDB-2024、OpenStreetMap/高德POI、3D-GloBFP建筑高度等多源数据,以1 km六边形网格为单元进行分析。【结果】城市适飞空域比例介于54.17%~99.82%,呈现“核心城市受限、非核心城市宽松”的空间分异并具显著正相关性;自然障碍比、城市紧凑性、城市面积与适飞比例正相关,与低空风险设施区域比例呈负相关;功能区的空间集聚布局对适飞性的约束效应强于其比例大小。
Abstract:[Background] The refined management of airspace resources has a significant impact on the development of the low-altitude economy. The assessment of low-altitude airspace airworthiness is a key prerequisite for low-altitude airspace management, but the mechanism by which it is influenced by the built environment on the ground has not yet been systematically analysed. [Objective]Assess the airworthiness and spatial developability of low-altitude airspace in cities, and reveal the mechanisms by which the built environment on the ground affects it. [Methods] Based on multisource geospatial data, a low-altitude airworthiness identification framework was constructed that includes the delineation of no-fly buffer zones, spatial aggregation analysis(global/local Moran's index), and regression analysis of influencing factors(OLS). [Data] Fifty-five cities in China were selected, and multi-source data such as GHS-UCDB-2024, OpenStreetMap/Amap POI, and 3D-GloBFP building heights were integrated for analysis using a 1 km hexagonal grid as the unit. [Results]The proportion of airspace suitable for flight in cities ranges from 54.17% to 99.82%, showing spatial differentiation with“core cities being restricted and non-core cities being relaxed”and a significant positive correlation. The natural obstacle ratio, urban compactness, and urban area are positively correlated with the proportion of airspace suitable for flight, while the proportion of low-altitude risk facility areas is negatively correlated. The spatial agglomeration layout of functional zones has a stronger constraining effect on flight suitability than their size.
[1]王纪武,王奕宁,章俊屾.低空经济下低空空域利用的规划应对策略[J].规划师, 2025, 41(4):31-38.WANG Jiwu, WANG Yining, ZHANG Junshen. Planning response strategies for the utilization of low-altitude airspace in the context of low-altitude economy[J]. Planners,2025, 41(4):31-38.
[2]全权,李刚,柏艺琴,等.低空无人机交通管理概览与建议[J].航空学报, 2020, 41(1):023238.QUAN Quan, LI Gang, BAI Yiqin, et al. Low altitude UAV traffic management:an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica,2020, 41(1):023238.
[3]郑宪秋,董作峰,王丽琴,等.基于人工智能的低空空域管理与智能调度研究[J].信息系统工程, 2025(5):124-127.
[4]王汝梅,魏晓芳,吕飞.低空经济趋势下的未来城市空间规划应对[J].城市观察, 2025(2):120-130, 163.WANG Rumei, WEI Xiaofang, LV Fei. Urban spatial planning strategies inresponse to the rise of low-altitude economy[J]. Urban Insight, 2025(2):120-130, 163.
[5]张宏宏,甘旭升,李双峰,等.复杂低空环境下考虑区域风险评估的无人机航路规划[J].仪器仪表学报, 2021,42(1):257-266.ZHANG Honghong, GAN Xusheng, LI Shuangfeng,et al. UAV route planning considering regional risk assessment under complex low altitude environment[J]. Chinese Journal of Scientific Instrument, 2021, 42(1):257-266.
[6]王世锦,隋东.低空空域飞行冲突风险研究[J].西南交通大学学报, 2010, 45(1):116-123.WANG Shijin, SUI Dong. Risk analysis of flight conflict in low altitude airspace[J]. Journal of Southwest Jiaotong University, 2010, 45(1):116-123.
[7]蔡铭,马川淇,朱华飒,等.低空运行安全保障技术研究综述[J/OL].交通运输工程与信息学报,2025:1-34.(2025-04-16)[2025-05-12]. https://doi. org/10.19961/j.cnki.1672-4747.2025.03.023.CAI Ming, MA Chuanqi, ZHU Huasa, et al. A review of safety assurance technologies for low-altitude airspace operations[J/OL]. Journal of Transportation Engineering and Information, 2025:1-34.(2025-04-16)[2025-05-12].https://doi.org/10.19961/j.cnki.1672-4747.2025.03.023
[8]贾永楠.低空空域无人系统交通管理方案初探[J].航空学报, 2025, 46(11):531399.JIA Yongnan. A scheme for unmanned aerial system traffic management in low altitude airspace[J].Acta Aeronautica et Astronautica Sinica, 2025, 46(11):531399
[9]张洪海,李姗,夷珈,等.城市低空航路规划研究综述[J].南京航空航天大学学报, 2021, 53(6):827-838.ZHANG Honghai, LI Shan, YI Jia, et al. Review on urban low-altitude air route planning[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2021, 53(6):827-838.
[10]陈思道,张学军,张维东.城市低空可达空域的构建及容量评估[J/OL].计算机工程与应用,2025:1-11.(2025-01-11)[2025-07-13]. http://kns. cnki. net/kcms/detail/11.2127.tp.20250418.1716.017.html.CHEN Sidao, ZHANG Xuejun, ZHANG Weidong. The construction and capacity evaluation of urban low-altitude Reachable Airspace[J/OL]. Computer Engineering and Applications, 2025:1-11.(2025-1-11)[2025-07-13].http://kns. cnki. net/kcms/detail/11.2127. tp. 20250418.1716.017.html.
[11]刘洁敏,苏雪娇,沈振江.无人机交通治理导向的城市低空空域与地上地下空间协同开发模式探析[J/OL].国际城市规划, 2024:1-16.(2024-11-04)[2025-06-24].https://doi.org/10.19830/j.upi.2024.236.LIU Jiemin, SU Xuejiao, SHEN Zhenjiang. Exploring the collaborative development model of urban low-altitude airspace and surface-subsurface spaces oriented by UAV-based traffic governance[J/OL]. Urban Planning International, 2024:1-16.(2024-11-04)[2025-06-24].https://doi.org/10.19830/j.upi.2024.236.
[12]李玲玲,韩瑞玲,张晓燕.城市低空空域可用空间识别与容量评估:以北京市为例[J].科学技术与工程,2021, 21(19):8253-8261.LI Lingling, HAN Ruiling, ZHANG Xiaoyan. Identification and capacity evaluation of available space in urban low-altitude airspace:a case study of Beijing[J]. Science Technology and Engineering, 2021, 21(19):8253-8261.
[13] YI J, ZHANG H, WANG F, et al. An operational capacity assessment method for an urban low-altitude unmanned aerial vehicle logistics route network[J].Drones, 2023, 7(9):582.
[14] FENG O, ZHANG H, TANG W, et al. Digital low-altitude airspace unmanned aerial vehicle path planning and operational capacity assessment in urban risk environments[J]. Drones, 2025, 9(5):320.
[15] MELCHIORRI M, FREIRE S, SCHIAVINA M, et al.The multi-temporal and multi-dimensional global urban centre database to delineate and analyse world cities[J].Scientific Data, 2024, 11:82.
[16] BRUNO M, MONTEIRO MELO H P, CAMPANELLI B, et al. A universal framework for inclusive 15-minute cities[J]. Nature Cities, 2024, 1(10):633-641.
[17] CHE Y, LI X, LIU X, et al. 3D-globfp:the first global three-dimensional building footprint dataset[J]. Earth System Science Data, 2024, 16:5357-5374.
[18] ERIKSTAD L, SIMENSEN T, BAKKESTUEN V, et al.Index measuring land use intensity:a gradient-based approach[J]. Geomatics, 2023, 3(1):188-204.
[19] KIM M, CHO G H. Analysis on bike-share ridership for origin-destination pairs:effects of public transit route characteristics and land-use patterns[J]. Journal of Transport Geography, 2021, 93:103047.
[20] XIANG Y L, KRISHNA SINNIAH G, LI R. Identify impacting factor for urban rail ridership from built environment spatial heterogeneity[J]. Case Studies on Transport Policy, 2022, 10(2):1159-1171.
[21]曹小曙,朱迪,吴楚晴,等.黄河流域交通可达性对经济发展水平的影响及其空间异质性[J/OL].地球科学与环境学报, 2025:1-14.(2025-06-16)[2025-06-23].https://doi.org/10.19814/j.jese.2024.12022.CAO Xiaoshu, ZHU Di, WU Chuqing, et al. Impact of transport accessibility on economic development level in yellow river basin, China and Its spatial heterogeneity[J/OL]. Journal of Earth Sciences and Environment, 2025:1-14.(2025-06-16)[2025-06-23]. https://doi. org/10.19814/j.jese.2024.12022.
[22]欧国立,托同霞,王俊伟.基于交通运输影响视角的我国共同富裕时空变化特征探析[J].铁道运输与经济,2025,47(5):163-175,214.OU Guoli,TUO Tongxia,WANG Junwei. Spatiotemporal evolution characteristics of China’s common prosperity based on influence of transportation[J]. Railway Transport and Economy,2025,47(5):163-175,214.
[23]李永波,王子琳.城市圈背景下山东省经济空间结构演变分析[J].中国石油大学学报(社会科学版), 2022,38(1):63-74.LI Yongbo, WANG Zilin. An analysis of the evolution of economic spatial structure of Shandong Province under the background of urban circle[J]. Journal of China University of Petroleum(Edition of Social Sciences), 2022,38(1):63-74.
[24]庞磊,任利剑,张哲浩,等.基于乘降客流特征的轨道交通站点分类及客流量影响因素分析[J].交通运输系统工程与信息, 2023, 23(4):184-193.PANG Lei, REN Lijian, ZHANG Zhehao, et al. Metro station classification based on boarding and alighting passenger flows and ridership impact factors[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4):184-193.
[25] ZHI D, SONG D, CHEN Y, et al. Spatial insights for sustainable transportation based on carbon emissions from multiple transport modes:a township-level case study in China[J]. Cities, 2024, 155:105405.
[26]潘晓,克亚琳,徐金硕.基于时空莫兰指数的石家庄二环路交通时空状态分析[J].地理空间信息, 2025, 23(5):76-79, 89.PAN Xiao, KE Yalin, XU Jinshuo. Spatio-temporal analysis of Shijiazhuang Second Ring Road traffic state based on spatio-temporal Moran's I[J]. Geospatial Information, 2025, 23(5):76-79, 89.
[27] HABIBA U, TALUKDAR S. The impact of traffic congestion, aggression and driving anger on driver stress:a structural equation modelling approach[J]. Journal of Transportation Safety&Security, 2025:1-22.
[28] SUN C, ZHAO J, SONG K. A study on the effect of urban form on the street interface rhythm based on multisource data and waveform classification[J]. Buildings,2024, 14(10):3207.
基本信息:
DOI:10.19961/j.cnki.1672-4747.2025.06.029
中图分类号:F562;V35;P208
引用信息:
[1]郭文彤,李翔宇,金温妍等.中国主要城市低空适飞空域分析[J].交通运输工程与信息学报,2025,23(03):60-73.DOI:10.19961/j.cnki.1672-4747.2025.06.029.
基金信息:
浙江省“尖兵”“领雁”研发攻关计划项目(2025C01053); 浙江省杰出青年基金项目(LR23E080002); 国家自然科学基金项目(7236113-7006)