nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.23 37-59
低空飞行器运行优化决策方法综述与展望
基金项目(Foundation): 国家自然科学基金项目(52402521); 四川省自然科学基金项目(25QNJJ3599); 河北省自然科学基金项目(G2024105007); 中央高校基本科研业务费项目(2682025CX056)
邮箱(Email): yimengzhang@swjtu.edu.cn;
DOI: 10.19961/j.cnki.1672-4747.2025.06.044
摘要:

【背景】低空经济作为战略性新兴产业,正通过低空飞行器技术的创新应用重塑传统的交通物流等领域。然而,低空飞行器的规模化应用面临空域资源有限、运行调度复杂、时空资源协调困难等多层面的挑战,亟需建立系统化的建模理论与高效算法作为支撑。【目标】本文旨在系统梳理低空飞行器运行优化方法的研究进展,深入剖析关键科学问题、建模方法,并明确未来研究方向。【方法】采用层次化分析框架,从战略层(基础设施选址、航路网络优化)、战术层(路径优化、协同路径优化)和运营层(实时路线规划、多交通主体协同机制、低空飞行器调度)三个维度,总结对比分析各层面问题的典型优化模型与方法。【结论】现有工作在航路网络设计、多目标协同优化等方面取得较大进展,但在动态环境适应性、不确定性处理和多主体协同等方面仍有待突破。【应用】本综述可为低空飞行器运行优化方向的后续研究提供系统的参考和借鉴。

Abstract:

[Background] As an emerging strategic industry, the low-altitude economy leverages unmanned aerial vehicle(UAVs) technologies to revolutionize traditional transportation and logistics sectors. However, the large-scale implementation of UAVs faces optimization-related challenges from multiple aspects, including limited airspace resources, complex operational scheduling, and difficulties in spatiotemporal resource coordination, which urgently call for systematic Modeling modeling and efficient algorithms as support. [Objective] This review systematically synthesizes research ad-vances in optimization methods for UAV operations within the low-altitude economy, clarifying key scientific problems, modeling techniques, and future research directions. [Methods] We provide an overview of the optimization issues for low-altitude aircraft UAV operations across three levels: strategic level(infrastructure site selection, airway network optimization), tactical level(path optimization, collaborative path optimization), and operational level(re-al-time route planning,multi-traffic entity coordination mechanisms, low-altitude vehicle dispatch). We conduct a comparative analysis of representative optimization models and methodologies employed at each level.[Conclusions] It is found that current research has achieved significant progress in air route network design and multi-objective cooperative optimization, yet persistent challenges remain in addressing dynamic environments, uncertainties, and multi-agent coordination. [Application] This review provides a systematic reference for subsequent research on the optimization of UAV operations.

参考文献

[1]朱琼宇.低空经济发展现状及未来趋势探讨[J].汽车与新动力, 2024, 7(S1):1-6.

[2]沈映春.低空经济:“飞”出新赛道[J].人民论坛, 2024(8):74-79.

[3]中国民用航空局.关于发布《国家空域基础分类方法》的通知[EB/OL].(2023-12-21)[2025-06-12]. http://www.caac. gov. cn/XXGK/XXGK/TZTG/202312/t20231221_222397.html.

[4] ALTINEL?K, DURMAZ E, ARAS N, et al. A location-allocation heuristic for the capacitated multi-facility Weber problem with probabilistic customer locations[J]. European Journal of Operational Research, 2009, 198(3):790-799.

[5] LIU K, LIU C, XIANG X, et al. Testing facility location and dynamic capacity planning for pandemics with demand uncertainty[J]. European Journal of Operational Research, 2023, 304(1):150-168.

[6] FENG J R, GAI W M, LI J Y, et al. Location selection of emergency supplies repositories for emergency logistics management:a variable weighted algorithm[J]. Journal of Loss Prevention in the Process Industries, 2020, 63:104032.

[7] WANG Y, ZHANG Y, BI M, et al. A robust optimization method for location selection of parcel lockers under uncertain demands[J]. Mathematics, 2022, 10(22):4289.

[8]陈刚,付江月.军民融合背景下无人机配送中心选址问题研究[J].计算机工程与应用, 2019, 55(8):226-231,237.CHEN Gang, FU Jiangyue. Drone distribution center location problem under military-civilian integration strategy[J]. Computer Engineering and Applications, 2019, 55(8):226-231, 237.

[9]唐梦园.基于NSGA-2的无人机配送中心选址优化[J].管理科学与工程, 2022, 11(2):201-211.TANG Mengyuan. Location optimization of UAV distribution center based on NSGA-2[J]. Management Science and Engineering, 2022, 11(2):201-211.

[10] JI M. Study on location selection and optimization of logistics center based on particle swarm optimization[J].International Core Journal of Engineering, 2020, 6(9):282-287.

[11]李骁,梁士栋.考虑跨区域条件下与非机动车协同配送的无人机起降点选址研究[J].建模与仿真, 2023, 12(4):4031-4040.LI Xiao,LIANG Shidong. Research on unmanned aerial vehicles landing site selection for collaborative delivery with non-motorized vehicle under cross-regional conditions[J]. Modeling and Simulation, 2023, 12(4):4031-4040.

[12]钱欣悦,张洪海,张芳,等.末端配送物流无人机起降点选址分配问题研究[J].武汉理工大学学报(交通科学与工程版), 2021,45(4):682-687, 693.QIAN Xinyue, ZHANG Honghai, ZHANG Fang, et al.Research on location allocation of UAV landing points for terminal distribution logistics[J]. Journal of Wuhan University of Technology(Transportation Science&Engineering), 2021, 45(4):682-687, 693.

[13]覃睿,杨智博.城区物流无人机起降场选址问题研究[J].科学技术创新, 2024(15):50-54.QIN Rui, YANG Zhibo. Research on the location of urban UAV logistics take-off and landing field[J]. Scientific and Technological Innovation, 2024(15):50-54.

[14] PAN J S, SONG P C, CHU S C, et al. Improved compact cuckoo search algorithm applied to location of drone logistics hub[J]. Mathematics, 2020, 8(3):333.

[15] ZHENG L, XU G, CHEN W. Using improved particle swarm optimization algorithm for location problem of drone logistics hub[J]. Computers, Materials&Continua, 2024, 78(1):935-957.

[16] WANG H, ZHANG Q, ZHANG H, et al. Urban logistics UAV vertiport location and layout planning method[C]//International Conference on Smart Transportation and City Engineering(STCE 2024). Chongqing:SPIE, 2025:144-156.

[17]刘光才,马寅松.城市物流无人机配送中心选址及任务分配研究[J].飞行力学, 2023, 41(3):88-94.LIU Guangcai, MA Yinsong. Research on location and task allocation of urban logistics UAV distribution center[J]. Flight Dynamics, 2023, 41(3):88-94.

[18]李章萍,贺亚蒙.基于GA-SA组合算法的山区复杂环境无人机起降点选址[J].科学技术与工程, 2024, 24(2):850-857.LI Zhangping, HE Yameng. Site selection of unmanned aerial vehicle take-off and landing points in mountainous complex environment based on GA-SA combination algorithm[J]. Science Technology and Engineering,2024, 24(2):850-857.

[19]任新惠,王柳,王佳雪.基于分区优化的无人机全自动机场选址研究[J].运筹与管理, 2023, 32(6):20-26.REN Xinhui, WANG Liu, WANG Jiaxue. Automatic vertiport location of unmanned aerial vehicle based on partition optimization[J]. Operations Research and Management Science, 2023, 32(6):20-26.

[20] LI X, SHEN Z, WEI W. An improved firefly algorithm used to location selection of distribution center for logistics UA V[C]//2019 IEEE/AIAA 38th Digital Avionics Systems Conference(DASC). San Diego, USA:IEEE,2019:1-8.

[21]陈亮,谷晓燕,刘建国,等.农村地区无人机配送站点多目标选址优化研究[J].北京信息科技大学学报(自然科学版), 2022, 37(3):34-40.CHEN Liang, GU Xiaoyan, LIU Jianguo, et al. Multiobjective optimization of UAV distribution location in rural areas[J]. Journal of Beijing Information Science&Technology University, 2022, 37(3):34-40.

[22] GUO T, WU H, ZAME S I, et al. Data-driven vertiport siting:a comparative analysis of clustering methods for urban air mobility[J]. Journal of Urban Mobility, 2025,7:100117.

[23] ZHAO Y, FENG T. Strategic integration of vertiport planning in multimodal transportation for urban air mobility:a case study in Beijing, China[J]. Journal of Cleaner Production, 2024, 467:142988.

[24] JIANG H, WANG J, REN X. Location-route planning for VTOL airport and UAV urban logistics network-a case study of Tianjin[J]. Promet-Traffic&Transportation,2025, 37(2):456-476.

[25] ROHRMEIER K, WEI W, ISON D. Decoding the vertiport:planning for urban air mobility[J]. Journal of Planning Literature, 2025:08854122251314481.

[26] ISON D C. Public opinion concerning the siting of vertiports[J]. International Journal of Aviation, Aeronautics,and Aerospace, 2023, 10(4):2374-6793.

[27] JIA G L, MA R G, HU Z H. Review of urban transportation network design problems based on CiteSpace[J].Mathematical Problems in Engineering, 2019, 2019(1):5735702.

[28] FARAHANI R Z, MIANDOABCHI E, SZETO W Y, et al.A review of urban transportation network design problems[J]. European Journal of Operational Research,2013, 229(2):281-302.

[29] GHARIBI M, BOUTABA R, WASLANDER S L. Internet of drones[J]. IEEE Access, 2016, 4:1148-1162.

[30] MOHAMED SALLEH M F B, CHI W, WANG Z, et al.Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]//2018 AIAA Information Systems-AIAA Infotech@Aerospace. Kissimmee, USA AIAA, 2018:2260.

[31]王登忠,孙彤宇,郑皓,等.智慧技术驱动下的城市交通网络结构类型构建研究[J].建设科技, 2022(13):52-56.WANG Dengzhong, SUN Tongyu, ZHENG Hao, et al.Research on the construction of urban transportation network structure type driven by smart technology[J]. Construction Science and Technology, 2022(13):52-56.

[32] MCFADYEN A, BRUGGEMANN T. Unmanned air traffic network design concepts[C]//2017 IEEE 20th International Conference on Intelligent Transportation Systems(ITSC). Yokohama, Japan:IEEE, 2017:1-7.

[33] LI Z, LI S, LU J, et al. Air route network planning method of urban low-altitude logistics UAV with double-layer structure[J]. Drones, 2025, 9(3):193.

[34] YE M, ZHAO J, GUAN Q, et al. Research on eVTOL air route network planning based on improved A*algorithm[J]. Sustainability, 2024, 16(2):561.

[35] LIAO X, XU C, YUE H. Enable UAVs safely flight in low-altitude:a preliminary research of the public air route network of UAVs[C]//2019 International Conference on Unmanned Aircraft Systems(ICUAS). Atlanta,USA:IEEE, 2019:959-964.

[36] WANG Z, DELAHAYE D, FARGES J L, et al. Route network design in low-altitude airspace for future urban air mobility operations A case study of urban airspace of Singapore[C]//International Conference on Research in Air Transportation, 2022. Tampa, USA:ICAAT, 2022:hal-03701655.

[37]张洪海,于文娟,周锦伦,等.基于需求的城市低空无人机航路网络构建方法[J].武汉理工大学学报(交通科学与工程版), 2024, 48(4):609-615.ZHANG Honghai, YU Wenjuan, ZHOU Jinlun, et al.Demand-based route network construction method for urban low-altitude UAV[J]. Journal of Wuhan University of Technology(Transportation Science&Engineering), 2024, 48(4):609-615.

[38] LI S, ZHANG H, LI Z, et al. An air route network planning model of logistics UAV terminal distribution in urban low altitude airspace[J]. Sustainability, 2021, 13(23):13079.

[39] LI S, ZHANG H, YI J, et al. A bi-level planning approach of logistics unmanned aerial vehicle route network[J]. Aerospace Science and Technology, 2023, 141:108572.

[40] LI J, SHEN D, YU F, et al. A method for air route network planning of urban air mobility[J]. Aerospace,2024, 11(7):584.

[41] CAI K, ZHANG J, ZHOU C, et al. Using computational intelligence for large scale air route networks design[J].Applied Soft Computing, 2012, 12(9):2790-2800.

[42] ZHAI W, HAN B, LI D, et al. A low-altitude public air route network for UAV management constructed by global subdivision grids[J]. PLoS One, 2021, 16(4):e0249680.

[43] ZHANG H, TIAN T, FENG O, et al. Research on public air route network planning of urban low-altitude logistics unmanned aerial vehicles[J]. Sustainability, 2023, 15(15):12021.

[44] WANG S, CAO X, LI H, et al. Air route network optimization in fragmented airspace based on cellular automata[J]. Chinese Journal of Aeronautics, 2017, 30(3):1184-1195.

[45] HE X, HE F, LI L, et al. A route network planning method for urban air delivery[J]. Transportation Research Part E:Logistics and Transportation Review, 2022, 166:102872.

[46]王非,张洪海,冯讴歌,等.基于改进A*算法的物流无人机航路网络协同规划[J].现代交通与冶金材料,2022, 2(5):31-38.WANG Fei, ZHANG Honghai, FENG Ouge, et al. Research on the design method of vertical take-off and landing procedures for logistics drones in urban areas based on the improved A*algorithm[J]. Modern Transportation and Metallurgical Materials, 2022, 2(5):31-38.

[47] COELHO B N, COELHO V N, COELHO I M, et al. A multi-objective green UAV routing problem[J]. Computers&Operations Research, 2017, 88:306-315.

[48]权在昕,武丁杰,高嘉静,等.城市低空空中交通及无人机路径规划研究综述[J].航空计算技术, 2024, 54(2):121-126.QUAN Zaixin, WU Dingjie, GAO Jiajing, et al. Overview of urban low altitude air mobility and UAV path planning[J]. Aeronautical Computing Technique, 2024,54(2):121-126.

[49]王超,王银花.一种改进Dijkstra算法的UAV路径规划[J].信息技术与信息化, 2021(10):217-219.

[50]占伟伟,王伟,陈能成,等.一种利用改进A*算法的无人机航迹规划[J].武汉大学学报(信息科学版), 2015,40(3):315-320.ZHAN Weiwei, WANG Wei, CHEN Nengcheng, et al.Path planning strategies for UAV based on improved A*algorithm[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3):315-320.

[51] REN T, ZHOU R, XIA J, et al. Three-dimensional path planning of UAV based on an improved A*algorithm[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference(CGNCC). Nanjing, China:IEEE, 2016:140-145.

[52]薛阳,孙越,叶晓康,等.基于近似最近邻搜索的改进PRM算法[J].计算机工程与设计, 2021, 42(11):3211-3217.XUE Yang, SUN Yue, YE Xiaokang, et al. Improved PRM algorithm based on approximate nearest neighbor search[J]. Computer Engineering and Design, 2021, 42(11):3211-3217.

[53]李文广,孙世宇,李建增,等.分段优化RRT的无人机动态航迹规划算法[J].系统工程与电子技术, 2018, 40(8):1786-1793.LI Wenguang, SUN Shiyu, LI Jianzeng, et al. UAV dynamic path planning algorithm based on segmentated optimization RRT[J]. Systems Engineering and Electronics,2018, 40(8):1786-1793.

[54]袁一帆,吴德伟,戴传金,等.基于RRT算法改进的无人机航迹规划研究[J].战术导弹技术, 2022(5):126-133.YUAN Yifan, WU Dewei, DAI Chuanjin, et al. Research on UAV’s path planning based on improved RRT algorithm[J]. Tactical Missile Technology, 2022(5):126-133.

[55] PAN W, HE Q, HUANG Y, et al. Four-dimensional trajectory planning for urban air traffic vehicles based on improved RRT*algorithm[J]. IEEE Access, 2023, 11:81113-81123.

[56]卢成阳,王文格.复杂城市环境下无人机三维路径规划[J].计算机系统应用, 2022,31(5):184-194.LU Chengyang, WANG Wenge. 3D path planning of UAV in complex urban environment[J]. Computer Systems&Applications, 2022, 31(5):184-194.

[57]李少波,宋启松,李志昂,等.遗传算法在机器人路径规划中的研究综述[J].科学技术与工程, 2020,20(2):423-431.LI Shaobo, SONG Qisong, LI Zhiang, et al. Review of genetic algorithm in robot path planning[J]. Science Technology and Engineering, 2020, 20(2):423-431.

[58] ZHOU H, XIONG H L, LIU Y, et al. Trajectory planning algorithm of UAV based on system positioning accuracy constraints[J]. Electronics, 2020, 9(2):250.

[59] KONATOWSKI S, PAWLOWSKI P. Application of the ACO algorithm for UAV path planning[J]. Przeglad Elektrotechniczny, 2019, 1(7):117-121.

[60]张耀中,李寄玮,胡波,等.基于改进ACO算法的多UAV协同航路规划[J].火力与指挥控制, 2017, 42(5):139-145.ZHANG Yaozhong, LI Jiwei, HU Bo, et al. Cooperative path planning for multi-UAVs based on improved ACO algorithm[J]. Fire Control&Command Control, 2017,42(5):139-145.

[61]赵丹,戚龙.基于蚁群-粒子群融合算法的无人机三维航迹规划研究[J].吉林化工学院学报, 2017, 34(3):93-98.ZHAO Dan, QI Long. Three-dimensional route planning of UAV based on ACO-PSO algorithm[J]. Journal of Jilin Institute of Chemical Technology, 2017, 34(3):93-98.

[62] DUAN H, YU Y, ZHANG X, et al. Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm[J]. Simulation Modelling Practice and Theory, 2010, 18(8):1104-1115.

[63]李保胜,李士心,刘晓倩,等.基于改进人工蜂群算法的无人机路径规划研究[J].计算机科学与应用, 2022,12(9):2179-2184.LI Baosheng, LI Shixin, LIU Xiaoqian, et al. Research on UAV path planning based on improved artificial bee colony algorithm[J]. Computer Science and Application,2022, 12(9):2179-2184.

[64]朱金磊,袁晓兵,裴俊.基于改进人工蜂群算法的灾害场景下路径规划[J].中国科学院大学学报, 2023, 40(3):397-405.ZHU Jinlei, YUAN Xiaobing, PEI Jun. Path planning in disaster scenarios based on improved artificial bee colony algorithm[J]. Journal of University of Chinese Academy of Sciences, 2023, 40(3):397-405.

[65]张驰,郭媛,黎明.人工神经网络模型发展及应用综述[J].计算机工程与应用, 2021, 57(11):57-69.ZHANG Chi, GUO Yuan, LI Ming. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications, 2021, 57(11):57-69.

[66]陈秋莲,郑以君,蒋环宇,等.基于神经网络改进粒子群算法的动态路径规划[J].华中科技大学学报(自然科学版), 2021, 49(2):51-55.CHEN Qiulian, ZHENG Yijun, JIANG Huanyu, et al.Improved particle swarm optimization algorithm based on neural network for dynamic path planning[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2021, 49(2):51-55.

[67] CUI Z, WANG Y. UAV path planning based on multilayer reinforcement learning technique[J]. IEEE Access,2021, 9:59486-59497.

[68]周彬,郭艳,李宁,等.基于导向强化Q学习的无人机路径规划[J].航空学报, 2021, 42(9):325109.ZHOU Bin, GUO Yan, LI Ning, et al. Path planning of UAV using guided enhancement Q-learning algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9):325109.

[69]何金,丁勇,杨勇,等.未知环境下基于PF-DQN的无人机路径规划[J].兵工自动化, 2020, 39(9):15-21.HE Jin, DING Yong, YANG Yong, et al. UAV path planning based on PF-DQN in uncertain environment[J].Ordnance Industry Automation, 2020, 39(9):15-21.

[70]牟治宇,张煜,范典,等.基于深度强化学习的无人机数据采集和路径规划研究[J].物联网学报, 2020, 4(3):42-51.MOU Zhiyu, ZHANG Yu, FAN Dian, et al. Research on the UAV-aided data collection and trajectory design based on the deep reinforcement learning[J]. Chinese Journal on Internet of Things, 2020, 4(3):42-51.

[71] YAN C, XIANG X, WANG C. Towards real-time path planning through deep reinforcement learning for a UAV in dynamic environments[J]. Journal of Intelligent&Robotic Systems, 2020, 98:297-309.

[72] KONG F, WANG Q, GAO S, et al. B-APFDQN:a UAV path planning algorithm based on deep Q-network and artificial potential field[J]. IEEE Access, 2023, 11:44051-44064.

[73]丁杰,王迪.基于强化学习的城市低空无人机路径规划[J].交通运输工程与信息学报, 2025, 23(2):189-206.DING Jie, WANG Di. Urban low-altitude UAV path planning based on reinforcement learning[J]. Journal of Transportation Engineering and Information, 2025, 23(2):189-206.

[74]张佳庆,孙韬,蒋弘瑞,等.基于林火风险的高压输电线路无人机巡检路径规划[J].清华大学学报(自然科学版), 2024, 64(5):911-921.ZHANG Jiaqing, SUN Tao, JIANG Hongrui, et al. Path planning for transmission line unmanned aircraft inspection based on forest fire risk[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(5):911-921.

[75]潘楠,张淼寒,韩宇航,等.面向城市巡防的多无人机协同航迹规划[J].信息与控制, 2022, 51(4):411-422.PAN Nan, ZHANG Miaohan, HAN Yuhang, et al. Coordinated path planning of multi-UAV for unban patrol[J].2022, 51(4):411-422.

[76]陈锦涛,李鸿一,任鸿儒,等.基于RRT森林算法的高层消防多无人机室内协同路径规划[J].自动化学报,2023, 49(12):2615-2626.CHEN Jintao, LI Hongyi, REN Hongru, et al. Cooperative indoor path planning of multi-UAVs for high-rise fire fighting based on RRT-forest algorithm[J]. Acta Automatica Sinica, 2023, 49(12):2615-2626.

[77] LI Y, ZHANG X, ZHU Y, et al. A UAV path planning method in three-dimensional urban airspace based on safe reinforcement learning[C]//2023 IEEE/AIAA 42nd Digital Avionics Systems Conference(DASC). Barcelona, Spain:IEEE, 2023:1-7.

[78]刘光才,马寅松,齐福强,等.基于改进A*-人工势场法的城市物流无人机路径规划[J].飞行力学, 2022, 40(6):16-23.LIU Guangcai, MA Yinsong, QI Fuqiang, et al. Flight path planning for urban logistics UAV based on improved A*-APF algorithm[J]. Flight Dynamics, 2022, 40(6):16-23.

[79] LI Y, LIU M. Path planning of electric VTOL UAV considering minimum energy consumption in urban areas[J]. Sustainability, 2022, 14(20):13421.

[80] ZHU X. Research on the trajectory planning of logistics drones in mountainous environments based on heuristic algorithm[C]//Seventh International Conference on Traffic Engineering and Transportation System(ICTETS2023). Dalin:SPIE, 2024:13064.

[81] XIAO J, LI Y, CAO Z, et al. Cooperative trucks and drones for rural last-mile delivery with steep roads[J].Computers&Industrial Engineering, 2024, 187:109849.

[82] LI J, LIU H, LAI K K, et al. Vehicle and UAV collaborative delivery path optimization model[J]. Mathematics,2022, 10(20):3744.

[83] HAGSPIHL T, KOLISCH R, SCHIFFELS S. Planning an airport shuttle network with air taxis using choicebased optimization[J]. OR Spectrum, 2025:1-35.

[84] JIANG Y, LI Z, WANG Y, et al. Vertiport location for eVTOL considering multidimensional demand of urban air mobility:an application in Beijing[J]. Transportation Research Part A:Policy and Practice, 2025, 192:104353.

[85] GUO Z, HAO M, LIU J, et al. Joint routing and charging optimization for eVTOL aircraft recovery[J]. Aerospace Science and Technology, 2022, 126:107595.

[86] LIU S, LI S, LI H, et al. TEeVTOL:balancing energy and time efficiency in eVTOL aircraft path planning across city-scale wind fields[DB/OL].(2024-3-21)[2025-7-26]. https:/doi. org/10.48550/arxiv. 2403.14877.

[87] MALL K, GADRE R, GERARDUS J, et al. Trajectory optimization of evtol vehicles for urban air mobility using indirect methods[C]//34th Congress of the International Council of the Aeronautical Sciences. Florence, Italy:ICAS, 2024:1-15.

[88] LIN Z, XU X, DEMIR E, et al. Optimizing task assignment and routing operations with a heterogeneous fleet of unmanned aerial vehicles for emergency healthcare services[J]. Computers&Operations Research, 2025,174:106890.

[89] ROJAS V D, SOLANO-CHARRIS E L, MU?OZ-VILLAMIZAR A, et al. Unmanned aerial vehicles/drones in vehicle routing problems:a literature review[J]. International Transactions in Operational Research, 2021, 28(4):1626-1657.

[90] SHI Y, YANG J, HAN Q, et al. Optimal decision-making of post-disaster emergency material scheduling based on helicopter-truck-drone collaboration[J]. Omega, 2024,127:103104.

[91] THIBBOTUWAWA A, BOCEWICZ G, NIELSEN P, et al. Unmanned aerial vehicle routing problems:a literature review[J]. Applied Sciences, 2020, 10(13):4504.

[92] LUO J, TIAN Y, WANG Z. Research on unmanned aerial vehicle path planning[J]. Drones, 2024, 8(2):51.

[93] XIONG S, LIU H H T. Low-altitude fixed-wing robust and optimal control using a barrier penalty function method[J]. Journal of Guidance, Control, and Dynamics,2023, 46(11):2218-2223.

[94] CAUSA F, FASANO G. Multiobjective modular strategic planning framework for low-altitude missions within the urban air mobility ecosystem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 60(1):474-489.

[95]李安醍,李诚龙,武丁杰,等.结合跳点引导的无人机随机搜索避撞决策方法[J].航空学报, 2020, 41(8):323726.LI Anti, LI Chenglong, WU Dingjie, et al. Collision avoidance decision method for UAVs in random search combined with jump point guidance[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):323726.

[96]胡嘉薇,贾泽群,孙延涛,等.多约束条件下多无人机协同任务规划问题分析及求解方法综述[J].计算机科学, 2023, 50(7):176-193.HU Jiawei, JIA Zequn, SUN Yantao, et al. Survey of analysis and solutions for multi-UAV cooperative mission planning problem under multi-constraint conditions[J]. Computer Science, 2023, 50(7):176-193.

[97] REYES N H, BARCZAK A L C, SUSNJAK T, et al.Fast and smooth replanning for navigation in partially unknown terrain:the hybrid fuzzy-D*lite algorithm[M]//KIM J H, KARRAY F, JO J, et al. Robot Intelligence Technology and Applications 4:Advances in Intelligent Systems and Computing. Cham:Springer International Publishing, 2016:31-41.

[98] WANG Z, GONG H, NIE M, et al. Research on multiUAV cooperative dynamic path planning algorithm based on conflict search[J]. Drones, 2024, 8(6):274.

[99]赵娟.启发点引导D*算法扩展的无人机航迹规划策略[J].机械设计与制造, 2020(2):153-157.ZHAO Juan. Unmanned air vehicle route planning strategy based on D*algorithm extension guided by inspiration point[J]. Machinery Design&Manufacture, 2020(2):153-157.

[100]张飞,白伟,乔耀华,等.基于改进D*算法的无人机室内路径规划[J].智能系统学报, 2019, 14(4):662-669.ZHANG Fei, BAI Wei, QIAO Yaohua, et al. UAV indoor path planning based on improved D*algorithm[J]. CAAI Transactions on Intelligent Systems, 2019,14(4):662-669.

[101] ZHANG S, LI Y, YE F, et al. A hybrid human-in-theloop deep reinforcement learning method for UAV motion planning for long trajectories with unpredictable obstacles[J]. Drones, 2023, 7(5):311.

[102] KHALIL A A, BYRNE A J, RAHMAN M A, et al. Replanner:efficient UAV trajectory-planning using economic reinforcement learning[C]//2021 IEEE International Conference on Smart Computing(SMARTCOMP). Irvine, USA:IEEE, 2021:153-160.

[103] HASANZADE M, KOYUNCU E. A dynamically feasible fast replanning strategy with deep reinforcement learning[J]. Journal of Intelligent&Robotic Systems,2021, 101(1):13.

[104] DONG L, HE Z, SONG C, et al. A review of mobile robot motion planning methods:from classical motion planning workflows to reinforcement learning-based architectures[J]. Journal of Systems Engineering and Electronics, 2023, 34(2):439-459.

[105] MISHRA P, SINGH G. Internet of vehicles for sustainable smart cities:opportunities, issues, and challenges[J]. Smart Cities, 2025, 8(3):93.

[106] RAMASAMY S, SABATINI R, GARDI A. A unified approach to separation assurance and Collision Avoidance for UAS operations and traffic management[C]//2017 International Conference on Unmanned Aircraft Systems(ICUAS). Miami, USA:IEEE, 2017:920-928.

[107] PONGSAKORNSATHIEN N, SAFWAT N E, XIE Y,et al. Advances in low-altitude airspace management for uncrewed aircraft and advanced air mobility[J].Progress in Aerospace Sciences, 2025, 154:101085.

[108] XIE Y, GARDI A, LIANG M, et al. Hybrid AI-based4D trajectory management system for dense low altitude operations and Urban Air Mobility[J]. Aerospace Science and Technology, 2024, 153:109422.

[109] YAHI N, GUDETA S G, KARIMODDINI A. On-thefly coordination of maneuvers for separation assurance of UAM aircraft in congested airspace[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11):18714-18733.

[110] Y AHI N, MATUTE J, KARIMODDINI A. Receding horizon based collision avoidance for UAM aircraft at intersections[J]. Green Energy and Intelligent Transportation, 2024, 3(6):100205.

[111] PASHA J, ELMI Z, PURKAYASTHA S, et al. The drone scheduling problem:a systematic state-of-the-art review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9):14224-14247.

[112]韩月明,刘铁林,赵张鹏.基于多联盟规则的无人机投送任务分配建模研究[J].舰船电子工程, 2024, 44(5):94-97.HAN Yueming, LIU Tielin, ZHAO Zhangpeng. Research on modeling of UAV delivery task allocation based on multiple alliance rules[J]. Ship Electronic Engineering, 2024, 44(5):94-97.

[113] RINALDI M, PRIMATESTA S, GUGLIERI G, et al.Multi-auctioneer market-based task scheduling for persistent drone delivery[C]//2023 International Conference on Unmanned Aircraft Systems(ICUAS). Warsaw, Poland:IEEE, 2023:790-797.

[114] HE Y, ZHENG Z, LI H, et al. A stochastic drone-scheduling problem with uncertain energy consumption[J].Drones, 2024, 8(9):430.

[115] WANG X, JIANG R, QI M. A robust optimization problem for drone-based equitable pandemic vaccine distribution with uncertain supply[J]. Omega, 2023,119:102872.

[116] GOLDEN B, ODEN E, RAGHAVAN S. The urban air mobility problem[J]. Annals of Operations Research,2025, 351:389-429.

[117] PRADEEP P, WEI P. Heuristic approach for arrival sequencing and scheduling for eVTOL aircraft in on-demand urban air mobility[C]//2018 IEEE/AIAA 37th Digital Avionics Systems Conference(DASC). London, UK:IEEE:2018:1-7.

[118] ZHEN L, YANG Z, LAPORTE G, et al. Unmanned aerial vehicle inspection routing and scheduling for engineering management[J]. Engineering, 2024, 36:223-239.

[119] ALJALAUD F, ALOHALI Y. Optimizing autonomous multi-UAV path planning for inspection missions:a comparative study of genetic and stochastic hill climbing algorithms[J]. Energies, 2025, 18(1):50.

[120]于子涵,王赫鸣,王建凯,等.基于无人机巡检的输电线路绝缘子及其异物检测算法[J].发电技术, 2025,46(3):532-540.YU Zihan, WANG Heming, WANG Jiankai, et al. Detection algorithm for insulators and foreign objects on transmission lines based on unmanned aerial vehicle inspection[J]. Power Generation Technology, 2025, 46(3):532-540.

基本信息:

DOI:10.19961/j.cnki.1672-4747.2025.06.044

中图分类号:V355

引用信息:

[1]范文博,肖杰,吴艺楷等.低空飞行器运行优化决策方法综述与展望[J].交通运输工程与信息学报,2025,23(03):37-59.DOI:10.19961/j.cnki.1672-4747.2025.06.044.

基金信息:

国家自然科学基金项目(52402521); 四川省自然科学基金项目(25QNJJ3599); 河北省自然科学基金项目(G2024105007); 中央高校基本科研业务费项目(2682025CX056)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文